Functional Characterization of the Madlp, a Spindle Checkpoint Protein in Fission Yeast

  • Kim, In-Gyu (School of Life Science and Biotechnology, Korea University) ;
  • Rhee, Dong-Keun (School of Life Science and Biotechnology, Korea University) ;
  • Lee, Hee-Cheul (School of Life Science and Biotechnology, Korea University) ;
  • Lee, Joo (Department of Biology, Yonsei University) ;
  • Kim, Hyong-Bai (Department of Biotechnology and Bioinformatics, Korea University)
  • Published : 2005.08.01

Abstract

Defects in the mitotic spindle or in the attachment of chromosomes to the spindle are believed to release an activated form of spindle checkpoint complex that inhibits APC-dependent ubiquitination and subsequently arrests the cell cycle at metaphase. When the spindle assembly is disrupted, the fission yeast mitotic arrest deficient (mad) mutants fail to arrest and rapidly lose viability. To enhance our understanding of the molecular mechanisms for the pathway of checkpoint function, the functional characterizations of Mad 1 p from Schizosaccharomyces pombe involved in this process have been carried out. Yeast two-hybrid and various deletion analyses of S. pombe Mad1 p reveal that the C terminus of Mad1p is critical for the binding of Mad2p and maintenance of Mad 1 p-Mad2p interaction. In addition, it was found. that the Mad1p region (residues 206-356) is essential for Mad1p-other checkpoint components. Mad1p truncating this region is sufficient to bind Mad2p but abolishes the checkpoint function, indicating that the checkpoint function is necessary for interaction of Mad 1 p-other checkpoint components. The possible functions of S. pombe Mad1p at the cell cycle checkpoint are discussed.

Keywords

References

  1. Alfa, C. E. and J. S. Hyams. 1990. Distribution of tubulin and actin through the cell division cycle of the fission yeast Schizosaccharomyces japonicus var. versatilis: A comparison with Schizosaccharomyces pombe. J. Cell. Sci. 96: 71-77
  2. Brady, D. M. and K. G Hardwick. 2000. Complex formation between Mad1p, Bub1p and Bub3p is crucial for spindle checkpoint function. Curr. Biol. 10: 675-678 https://doi.org/10.1016/S0960-9822(00)00515-7
  3. Cahill, D. P., C. Lengauer, J. Yu, G J. Riggins, J. K. Willson, S. D. Markowitz, K. W. Kinzler, and B. Vogelstein. 1998. Mutations of mitotic checkpoint genes in human cancers. Nature 392: 300-303 https://doi.org/10.1038/32688
  4. Chen, R. H., D. M. Brady, D. Smith, A. W. Murray, and K. G. Hardwick. 1999. The spindle checkpoint of budding yeast depends on a tight complex between the Mad1 and Mad2 proteins. Mol. Biol. Cell 10: 2607-2618 https://doi.org/10.1091/mbc.10.8.2607
  5. Chen, R. H., A. Shevchenko, M. Mann, and A. W. Murray. 1998. Spindle checkpoint protein Xmad1 recruits Xmad2 to unattached kinetochores. J. Cell. Biol. 143: 283-295 https://doi.org/10.1083/jcb.143.2.283
  6. Chen, R. H., J. C. Waters, E. D. Salmon, and A. W. Murray. 1996. Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores. Science 274: 242-246 https://doi.org/10.1126/science.274.5285.242
  7. Cohen-Fix, O., J. M. Peters, M. W. Kirschner, and D. Koshland. 1996. Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation ofthe anaphase inhibitor Pdsl p. Genes Dev. 10: 3081-3093 https://doi.org/10.1101/gad.10.24.3081
  8. Elledge, S. J. 1996. Cell cycle checkpoints: Preventing an identity crisis. Science 274: 1664-1672 https://doi.org/10.1126/science.274.5293.1664
  9. Fang, G., H. Yu, and M. W. Kirschner. 1998. The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev. 12: 1871-1883 https://doi.org/10.1101/gad.12.12.1871
  10. Funabiki, H., H. Yamano, K. Kumada, K. Nagao, T. Hunt, and M. Yanagida. 1996. Cut2 proteolysis required for sister-chromatid seperation in fission yeast. Nature 381: 438-441 https://doi.org/10.1038/381438a0
  11. Hardwick, K. G and A. W. Murray. 1995. Mad1p, a phosphoprotein component of the spindle assembly checkpoint in budding yeast. J. Cell. Biol. 131: 709-720 https://doi.org/10.1083/jcb.131.3.709
  12. Hardwick, K. G, E. Weiss, F. C. Luca, M. Winey, and A. W. Murray. 1996. Activation of the budding yeast spindle assembly checkpoint without mitotic spindle disruption. Science 273:953-956 https://doi.org/10.1126/science.273.5277.953
  13. He, X., T. E. Patterson, and S. Sazer. 1997. The Schizosaccharomyces pombe spindle checkpoint protein mad2p blocks anaphase and genetically interacts with the anaphase-promoting complex. Proc. Natl. Acad. Sci. USA 94: 7965-7970
  14. Holloway, S. L., M. Glotzer, R. W. King, and A. W. Murray. 1993. Anaphase is initiated by proteolysis rather than by the inactivation of maturation-promoting factor. Cell 73: 1393-1402 https://doi.org/10.1016/0092-8674(93)90364-V
  15. Hoyt, M. A., L. Totis, and B. T. Roberts. 1991. S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 66: 507- 517 https://doi.org/10.1016/0092-8674(81)90014-3
  16. Ikui, A. E., K. Furuya, M. Yanagida, and T. Matsumoto. 2002. Control of localization of a spindle checkpoint protein, Mad2, in fission yeast. J. Cell. Sci. 115: 1603-1610
  17. Jin, D. Y, F. Spencer, and K. T. Jeang. 1998. Human T cell leukemia virus type 1 oncoprotein Tax targets the human mitotic checkpoint protein MAD1. Cell 93: 81-91 https://doi.org/10.1016/S0092-8674(00)81148-4
  18. Keeney, J. B. and J. D. Boeke. 1994. Efficient targeted integration at leu 1-32 and ura4-294 in Schizosaccharomyces pombe. Genetics 136: 849-856
  19. Li, R. and A. W. Murray. 1991. Feedback control of mitosis in budding yeast. Cell 66: 519-531 https://doi.org/10.1016/0092-8674(81)90015-5
  20. Li, Y. and R. Benezra. 1996. Identification of a human mitotic checkpoint gene: hsMAD2. Science 274: 246-248 https://doi.org/10.1126/science.274.5285.246
  21. Lorca, T., A. Castro, A. M. Martinez, S. Vigneron, N. Morin, S. Sigrist, C. Lehner, M. Doree, and J. C. Labbe. 1998. Fizzy is required for activation of the APC/cyclosome in Xenopus egg extracts. EMBO J. 17: 3565-3575 https://doi.org/10.1093/emboj/17.13.3565
  22. Lupas, A., M. Van Dyke, and J. Stock. 1991. Predicting coiled coils from protein sequences. Science 252: 1162-1164 https://doi.org/10.1126/science.252.5009.1162
  23. Maundrell, K. 1993. Thiamine-repressible expression vectors pREP and pRlP for fission yeast. Gene 123: 127-130 https://doi.org/10.1016/0378-1119(93)90551-D
  24. Michel, L. S., V. Liberal, A. Chatterjee, R. Kirchwegger, B. Pasche, W. Gerald, M. Dobles, P. K. Sorger, V. V. Murty, and R. Benezra. 2001. MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 409: 355-359 https://doi.org/10.1038/35053094
  25. Millband, D. N. and K. G Hardwick. 2002. Fission yeast Mad3p is required for Mad2p to inhibit the anaphasepromoting complex and localizes to kinetochores in a Bub1p-, Bub3p-, and Mph1p-dependent manner. Mol. Cell. Biol. 22: 2728-2742 https://doi.org/10.1128/MCB.22.8.2728-2742.2002
  26. Moreno, S., A. Klar, and P. Nurse. 1991. Molecular genetic analysis of fission yeast Schizosaccharornyces porn be. Methods Enzymol. 194: 795-823 https://doi.org/10.1016/0076-6879(91)94059-L
  27. Murone, M. and V. Simanis. 1996. The fission yeast drnal gene is a component of the spindle assembly checkpoint, required to prevent septum formation and premature exit from mitosis if spindle function is compromised. EMBO J. 15: 6605-6616
  28. Rieder, C. L. and E. D. Salmon. 1998. The vertebrate cell kinetochore and its roles during mitosis. Trends Cell. Biol. 8: 310-318 https://doi.org/10.1016/S0962-8924(98)01299-9
  29. Rudner, A. D. and A. W. Murray. 1996. The spindle assembly checkpoint. Curr. Opin. Cell. Biol. 8: 773-780 https://doi.org/10.1016/S0955-0674(96)80077-9
  30. Weiss, E. and M. Winey. 1996. The Saccharomyces cerevisiae spindle pole body duplication gene MPS 1 is part of a mitotic checkpoint. J. Cell. Biol. 132: 111-123 https://doi.org/10.1083/jcb.132.1.111
  31. Yamamoto, A., V. Guacci, and D. Koshland. 1996. Pds1p, an inhibitor of anaphase in budding yeast, plays a critical role in the APC and checkpoint pathway(s). J. Cell. Biol. 133: 99-110 https://doi.org/10.1083/jcb.133.1.99