미시구조를 고려한 3차원 직교직물 복합재료 평판의 저속충격 거동해석

low Velocity Impact Behavior Analysis of 3D Woven Composite Plate Considering its Micro-structure

  • 지국현 (서울대학교 기계항공공학부) ;
  • 김승조 (서울대학교 기계항공공학부)
  • 발행 : 2005.08.01

초록

본 논문에서는 3차원 직교 직물 복합재료의 구성성분인 얀(Yarn)의 기하학적인 형상을 고려하여 직접수치모사(DNS) 모델을 개발하고 이를 이용하여 직교 직물 복합재료 평판의 저속충격 현상을 모사하였다. 미시구조를 보다 상세하고 정확하게 고려하기 위하여 토우 간격과 굴곡 등을 고려한 단위 구조를 제시하고 이를 이용하여 DNS 기반의 평판모델을 구현하였다. 정적 가상 실험을 통하여 얻은 DNS 모델의 거시적 등가 물성치를 바탕으로 한 거시기계학적 해석과의 비교하였고, DNS 모델을 이용하여 기존의 거시기계학적 모델에서 구현이 어려운 기하학적인 형상 차이에 따른 저속충격 현상의 영향을 고찰하였다. 그리고 보다 실제 실험에 가까운 가상 시편의 크기를 고려하고 해석의 효율성을 높이기 위하여 DNS개념에 기반한 멀티스케일 모델을 개발하여 거시/미시 해석 결과 특성을 함께 고찰하였다.

In this paper, we developed the direct numerical simulation(DNS) model considering the geometry of yams which consist of 3D orthogonal woven composite materials, and using this model, the dynamic behavior of under transverse low-velocity impact has been studied. To build up the micromechanical model considering tow spacing and waviness, an accurate unit structure is presented and used in building structural plate model based on DNS. For comparison, DNS results are compared with those of the micromechanical approach which is based on the global equivalent material properties obtained by DNS static numerical tests. The effects with yarn geometrical irregularities which are difficult to consider in a macroscopic approach are also investigated by the DNS model. Finally, the multiscale model based on the DNS concepts is developed to enhance efficiency of analysis with real sized numerical specimen and macro/micro characteristics are presented.

키워드

참고문헌

  1. Abrate, S., 'Impact on laminated composite supported materials,' Applied Mechanics Review, Vol. 44, 1991, pp. 155-190 https://doi.org/10.1115/1.3119500
  2. Naik, N. K., and Meduri, Sailendra, 'Polymer-matrix composites subjected to low-velocity impact: effect of laminate configuration,' Composites Science and Technology, Vol. 61, 2001, pp. 1429-1436 https://doi.org/10.1016/S0266-3538(01)00044-6
  3. Naik, N. K., Sekher, Y. Chandra, and Meduri, Sailendra, 'Damage in woven-fabric composite subjected to low-velocity impact,' Composites Science and Technology, Vol. 61, 2000, pp. 731-744
  4. Karaoglan, Levent, Noor, Ahmed K., and Kim, Yong H., 'Frictional contact/impact response of textile composite structures,' Composite Structures, Vol. 37, 1997, pp. 269-280 https://doi.org/10.1016/S0263-8223(97)80018-9
  5. Sutherland, L. S., and Soares, C. Guedes, 'Impact tests on woven-roving E-glass/polyester laminates,' Composites Science and Technology, Vol. 59, 1999, pp. 1553-1567 https://doi.org/10.1016/S0266-3538(99)00023-8
  6. Sutherland, L. S., and Soares, C. Guedes, 'Effects of laminate thickness and reinforcement type on the impact behavior of E-glass/polyester laminates,' Composites Science and Technology, Vol. 59, 1999, pp. 2243-2260 https://doi.org/10.1016/S0266-3538(99)00080-9
  7. Miravete, Antonio, and Chiminelli, Agustin, 'Mechanical characterization of 3D weaving fabric/organic matrix composites and their application to energy absorption components,' Fifth World Congress on Computational Mechanics, 7-12, July, 2002, Vienna, Austria
  8. Aboudi, J., Mechanics of Composite Materials A Unified Micromechanical Approach, Elsevier, New York, 1991
  9. Sun, C. T., and Vaidya, R. S., 'Prediction of Composite Properties from a Representative Volume Element,' Composites Science and Technology, Vol. 56, 1996, pp. 171-179 https://doi.org/10.1016/0266-3538(95)00141-7
  10. Kim, Seung Jo, Cho, Jin Yeon and Kim, Jeong Ho, Finite Element Modeling and Analysis of Composite Structures, Proceeding of the First Korea-U.S. Workshop on Composite Material, 1998
  11. Kim, S. J., Lee, C. S., Yeo, H. J., Kim, J. H. and Cho, J. Y., 'Direct Numerical Simulation of Composite Structures,' Journal of Composite Materials, Vol. 36, No. 24, 2002, pp. 2765-2785 https://doi.org/10.1177/002199802761675610
  12. Tan, Ping, Tong, Liyong, and Steven G. P., 'Behavior of 3D orthogonal woven CFRP composites. Part 1. Experimental investigation,' Composites, Part A: Applied Science and Manufacturing, Vol. 31, 2000, pp. 259-271 https://doi.org/10.1016/S1359-835X(99)00070-6
  13. Tan, Ping, Tong, Liyong, and Steven G. P., 'Behavior of 3D orthogonal woven CFRP composites. Part II. FEA and analytical modeling approaches,' Composites, Part A. Applied Science and Manufacturing, Vol. 31, 2000, pp. 273-281 https://doi.org/10.1016/S1359-835X(99)00071-8
  14. Chamis, C.C., 'Simplified composite micromechanics equations for hygal, thermal, and mechanical properties,' SAMPE Quarterly, 1984, April, pp. 14-23
  15. Kim, Seung Jo, Lee, Chang Sung, Shin, Heon, and Tong, Liyong, 'Virtual Experimental Characterization of 3D Orthogonal Woven Composite Material,' 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, 16-19 April, 2001, Seattle, WA, USA
  16. Cox, Brian N., and Flanagan, Gerry, 'Handbook of Analytical Methods for Textile Composites,' NASA Contractor Report 4750
  17. LS-DYNA3D User's Manual ver.936, Livermore Software Technology Corporation, 1995
  18. Kim, Seung Jo, and Ji, Kuk Hyun, 'Material and Low-Velocity Impact Characterizations of Textile Composite Plates,' 17th Annual Technical Conference, American Society for Composites 2002, October 21-23, 2002, Indiana, USA
  19. Ji, Kuk Hyun, Byun, Wan Il, and Kim, Seung Jo, 'Multi-Scale Low Velocity Impact Analysis of 3D Woven Composite Plates,' 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, 18-21 April 2005, Austin, Texas, USA