Resolving Multi-Translatable Verbs Japanese-TO-Korean Machine Translation

  • Kim Jung-In (Dept. of Game Engineering, Tongmyong University of Information technology) ;
  • Lee Kang-Hyuk (Dept. of Game Engineering, Tongmyong University of Information Technology)
  • Published : 2005.06.01

Abstract

It is well-known that there are many similarities between Japanese and Korean language. For example, the order of words and the nature of the grammatical conjugation of both languages are almost the same. Another similarity is the frequent omission of the subject from a sentence. Moreover, both languages have honorific expressions and the identical concept for expressing nouns in terms of Chinese characters. Using these similarities, we have developed a word-to-word translation system which does away with any deep level analysis of syntactic and semantic structures of the two languages. If we use these similarities, the direct translation method is superior to the internal language translation method or transfer-based translation method. Although the MT system based on the direct translation method is more easily developed than the ones based on other methods, it may have a lot of difficulties when it tries to select the appropriate target word from ambiguous source verbs. In this paper, we propose a new algorithm to extract the meaning of substantives and to make use of the order of the extracted meaning. We could select $86.5\%$ appropriate verbs in the sample sentences from IPAL-verb-dictionary. $13.5\%$ indicates the cases in which we could not distinguish the meaning of substantives. We are convinced, however, that the succeeding rate can be increased by getting rid of the meaning of verbs thatare not used so often.

Keywords