Color Image Segmentation Using Adaptive Quantization and Sequential Region-Merging Method

적응적 양자화와 순차적 병합 기법을 사용한 컬러 영상 분할

  • 곽내정 (목원대학교 정보통신공학부) ;
  • 김영길 (충북대학교 대학원 정보통신공학과) ;
  • 권동진 (충북대학교 대학원 정보통신공학과) ;
  • 안재형 (충북대학교 전기 전자공학부)
  • Published : 2005.04.01

Abstract

In this paper, we propose an image segmentation method preserving object's boundaries by using the number of quantized colors and merging regions using adaptive threshold values. First of all, the proposed method quantizes an original image by a vector quantization and the number of quantized colors is determined differently using PSNR each image. We obtain initial regions from the quantized image, merge initial regions in CIE Lab color space and RGB color space step by step and segment the image into semantic regions. In each merging step, we use color distance between adjacent regions as similarity-measure. Threshold values for region-merging are determined adaptively according to the global mean of the color difference between the original image and its split-regions and the mean of those variations. Also, if the segmented image of RGB color space doesn't split into semantic objects, we merge the image again in the CIE Lab color space as post-processing. Whether the post-processing is done is determined by using the color distance between initial regions of the image and the segmented image of RGB color space. Experiment results show that the proposed method splits an original image into main objects and boundaries of the segmented image are preserved. Also, the proposed method provides better results for objective measure than the conventional method.

본 논문은 적응적 양자화 컬러 수와 적응적 병합 임계값을 이용하여 순차적으로 영역을 병합하여 영역의 경계를 보존하며 영상을 분할하는 방법을 제안한다. 제안방법은 먼저 PSNR을 이용하여 영상에 따라 다른 양자화 컬러 수로 영상을 벡터 양자화 한다. 그리고 양자화 영상을 이용하여 초기 영역을 설정한 후 CIE Lab와 RGB 컬러 공간에서 순차적으로 유사한 영역을 병합하여 영상의 주요 영역들로 분할한다. 병합의 각 단계에서는 유사성의 척도로 인접 영역의 컬러 거리를 사용하며 병합 임계값은 분할된 영역과 원영상의 컬러 거리의 평균과 평균 변화량을 이용하여 적응적으로 구하였다. 또한 RGB 컬러 공간에서의 병합 영상이 주요 영역 단위로 병합되지 않은 경우 후처리로서 CIE Lab 영역에서 다시 한번 병합을 수행한다. 이때 초기 영역 영상과 RGB 컬러 공간에서의 병합 영상의 영역간의 컬러 거리를 이용하여 병합 유무를 결정한다. 실험 결과는 제안방법에 의한 결과 영상이 주요 객체를 중심으로 분할되며 객체의 경계가 잘 보존됨을 보여준다. 또한 객관적인 척도에서도 기존의 방법에 비해 좋은 결과를 보여준다.

Keywords