다양한 응력조건을 고려한 새로운 압밀계수 평가방법

A New Method for Estimating the Coefficient of Consolidation in Various Stress Conditions

  • 곽찬문 (동부건설 토목사업부) ;
  • 정영훈 (서울대학교 공학연구소) ;
  • 김창엽 (한국해양연구원 연안항만공학연구본부) ;
  • 정충기 (서울대학교 지구환경시스템공학부)
  • Kwak Chan-Mun (Civil Engrg. Division, Dongbu Corporation) ;
  • Jung Young-Hoon (Research Institute of Engrg. Science, College of Engrg., Seoul National Univ) ;
  • Kim Chang-Youb (Costal Engrg. and Harbour Research Division, Korea Ocean Research & Development Institute) ;
  • Chung Choong-Ki (School of Civil, Urban & Geotechnical Engrg., Seoul National Univ)
  • 발행 : 2005.07.01

초록

일반적으로 압밀계수는 일차원 압밀이론에 근거한 표준압밀시험을 이용하여 평가된다 하지만 실제 현장에서는 압밀 중 3차원적으로 응력 및 변형이 발생하게 된다. 본 연구에서는 실제 현장에서 발생 가능한 다양한 응력-변형 조건을 고려한 새로운 압밀계수 평가방법을 제안하였다. 제안된 방법에 의한 과잉간극수압 소산양상 예측 결과는 실측치와 매우 잘 일치하였으며, 따라서 본 연구에서 제안된 방법을 이용하는 경우 지반의 압밀 속도를 보다 정확하게 예측할 수 있을 것으로 판단된다.

The coefficient of consolidation has been evaluated using the conventional oedometer tests based on the one-dimensional consolidation theory. In the field, however, the actual response of the soil will be subject to the three-dimensional condition during consolidation. In this research, a new method f3r estimating the coefficient of consolidation for various stress-deformation conditions was proposed. The good agreement between the computed dissipation of pore pressure and the measured data confirms the usefulness and the applicability of the proposed method to predict the exact rate of consolidation.

키워드

참고문헌

  1. 김창엽 (2004), 포화 점정토지반 침하량의 합리적 평가를 위한 새로운 응력경로법 적용, 박사학위논문, 서울대학교, pp.15-22
  2. 윤찬영 (2000), 일정 변형률 시험을 이용한 방사방향배수의 압밀 거동 해석, 석사학위논문, 서울대학교, pp.11-16
  3. Al-Tabaa, A. and Wood, D.M. (1987), 'Some measurements of the permeability of kaolin', Geotechnique, Vol.37, No.4, pp.499-503 https://doi.org/10.1680/geot.1987.37.4.499
  4. Burland, J.B. and Georgiannou, V.N. (1991), 'Small strain stiffness under generalized stress changes', Proc. 10th Eur. Conf. Soil Mech., Florence, Vol.1, pp.41-45
  5. Conte, E. (1998), 'Consolidation of anisotropic soil deposits', Soils and Foundations, Vol.38, No.4, pp.227-237
  6. Davis, E.H. and Poulos, H.G. (1972), 'Rate of settlement under two- and three-dimensional conditions', Geotechnique, 22, No.1, pp.95-114 https://doi.org/10.1680/geot.1972.22.1.95
  7. Duncan, M. and Fellow, J. (1993), 'Limitations of conventional analysis of consolidation settlement', Journal of Geotechnical Engineering, Vol.19, No.9, pp.1346-1350
  8. Moriwaki, T. and Umehara, K. (2003), 'Method for Determining the Coefficient of Permeability of clays', Geotechnical Testing Journal, Vol.26, No.1, pp.1-2
  9. Narasimha Raju, P.S.R, Pandian, N.S., and Nagaraj, T.S. (1995), 'Analysis and Estimation of the Coefficient of Consolidation', Geotechnical Testing Journal, Vol.18, No.2, pp.252-258 https://doi.org/10.1520/GTJ10325J
  10. Olson, R.E. (1986), 'State of the art: Consolidtion Testing', Consolidation of Soil: Testing and Evaluation, ASTM STP 892, R. N. Yong and F. C. Townsend, Eds., American Society for Testing and Materials, West Conshohocken, PA, pp.7-70