Flame Retardancy of Polypropylene/Montmorillonite Nanocomposites

폴리프로필렌/몬모릴로나이트 나노복합체의 난연성

  • Lee Sung-Goo (Polymeric Nanomaterials Lab., Korea Research Institute of Chemical Technology) ;
  • Won Jong Chan (Polymeric Nanomaterials Lab., Korea Research Institute of Chemical Technology) ;
  • Lee Jae-Heung (Polymeric Nanomaterials Lab., Korea Research Institute of Chemical Technology) ;
  • Choi Kil-Yeong (Polymeric Nanomaterials Lab., Korea Research Institute of Chemical Technology)
  • 이성구 (한국화학연구원 고분자나노소재연구팀) ;
  • 원종찬 (한국화학연구원 고분자나노소재연구팀) ;
  • 이재흥 (한국화학연구원 고분자나노소재연구팀) ;
  • 최길영 (한국화학연구원 고분자나노소재연구팀)
  • Published : 2005.05.01

Abstract

PP/MMT nanocomposites having a various compositions were prepared by melt blending with a twin screw extruder. In this study, maleic anhydride-grafted PP (MAH-g-PP) was used as a compatibilizer in order to assist the exfoliation or hen in the pp matrix. from the results or x-ray diffraction (XRD) and transmission electron microscope (TEM) measurements for the nanocomposites, we confirmed that MMT was exfoliated. PPM nanocomposites have shown good flame retardancy by synergistic effect between MMT and flame retardant. The mechanical and thermal properties of the nanocomposites showed significant enhancement compared with those of neat PP, The excellent flame retardancy of the PP/MMT nanocomposites, UL94 V-0 value, was successfully obtained with reduced amount of the flame retardant.

다양한 조성을 갖는 폴리프로필렌(PP)/몬모릴로나이트(MMT) 나노복합체를 이축압출기를 이용하여 용융혼합 법으로 제조하였다. 본 연구에서는 MMT의 박리를 위하여 MAH-g-PP를 상용화제로 사용하였고, 제조된 나노복합체를 X-ray 회절(X-ray diffraction, XRD)과 투과전자현미경(Transmission Electron Microscope, TEM)을 통해 MMT가 박리된 것을 확인하였다. PP/MMT 나노복합체의 제조에 사용한 MMT는 난연제와 상승효과를 발휘하여 난연제의 양을 절반가까이 줄였을 경우에도 우수한 난연효과를 나타내었다. PP/MMT 나노복합체는 순수 PP보다 기계적 물성과 열적 물성이 증가하였고, 난연성은 UL 94 V-0로 매우 우수하였다.

Keywords

References

  1. H. Shi, T. Lan, and T. J. Pinnavaia, Chem. Mater., 8, 1584 (1996)
  2. J. W. Gilman, T. Kashiwagi, and J. D. Lichtenhan, SAMPE Journal, 33, 40 (1997)
  3. R. Krishnamoorti and E. P. Giannelis, Macromolecules, 30, 4097 (1997)
  4. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, and O. Kamigaito, J. Polym. Sci.; Part A: Polym. Chem., 31, 983 (1993)
  5. Y Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, O. Kamigaito, and K. Kaji, J. Polym. Sci. Part B: Polym. Phys., 32, 625 (1994)
  6. J. G. Ryu, G. R. Park, S. G. Lyu, J. H. Rhew, and G. S. Sur, Polymer(Korea), 22, 328 (1998)
  7. D. C. Lee and L. W. Jang, J. Appl. Polym. Sci., 61, 1117 (1996)
  8. P. B. Messersmith and E. P. Giannelis, Chem. Mater., 5, 1064(1993)
  9. H. K Choi, Y. H. Park, S. G. Lyu, B. S. Kim, and G. S. Sur, Polymer(Korea), 23, 456 (1999)
  10. R. A. Vaia, K. D. Jandt, E. J. Kramer, and E. P. Giannelis, Macromolecules, 28, 8080 (1995)
  11. R. A. Vaia and E. P. Giannelis, Macromolecules, 30, 8000 (1997)
  12. M. Kawasumi, N. Hasegawa, M. Kato, A. Usuki, and A. Okada, Macromolecules, 30, 6333 (1997)
  13. Y. Tang, Y. Hu, L. Song, R. Zong, Z. Gui, Z. Chen, and W. Fan, Polym. Degrad. Stabil., 82, 127 (2003)
  14. J. W. Gilman, C. L. Jackson, A. B. Morgan, R. Hams, E. Manias, E. P. Giannelis, M. Wuthenow, D. Hilton, and S. H. Philips, Chem. Mater., 12, 1866 (2000)
  15. Y. Tang, Y. Hu, R. Zhang, Z. Gui, Z. Wang, Z. Chen, and W. Fan, Polymer, 45, 5317 (2004)
  16. P. H. Nam, P. Maiti, M. Okamoto, T. Kotaka, N. Hasegawa, and A. Usuki, Polymer, 42, 9633 (2001) https://doi.org/10.1016/S0032-3861(00)00352-9
  17. M. Zanetti, G. Camino, D. Canavese, A. B. Morgan, F. J. Lamelas, and C. A. Wilkie, Chem. Mater., 14, 189 (2002)
  18. M. Kato, M. Matsushita, and K. Fukumori, Polym. Eng. Sci., 44, 1205 (2004)
  19. M. T. Tonthat, F. P. Sarazin, K. C. Cole, M. N. Bureau, and J. Denault, Polym. Eng. Sci., 44, 1212 (2004)
  20. H. Qin, S. Zhang, C. Zhao, M. Feng, M. Yang, Z. Shu, and S. Yang, Polym. Degrad. Stabil., 85, 807 (2004)