개선된 거리변환 알고리즘을 이용한 이동 로봇의 경로 계획 및 추적

Path Planning and Tracking for Mobile Robots Using An Improved Distance Transform Algorithm

  • 박진현 (진주산업대학교 메카트로닉스공학과) ;
  • 박기형 (한국전력공사 수원전력관리처) ;
  • 최영규 (부산대학교 전자전기정보컴퓨터공학부)
  • 발행 : 2005.07.01

초록

본 연구는 개선된 거리변환 알고리즘을 사용하여 로봇이 이동해야 할 경로를 생성하고, 퍼지 시스템을 사용하여 경로추적 행위기와 장애물 회피 행위기를 구현해서 로봇이 그 경로를 안전하고 효율적으로 추적하는 것을 목적으로 하였다. 개선된 거리변환 알고리즘을 이용하여 로봇의 유연한 주행을 가능하게 했으며, 또한 주행거리와 주행시간도 단축되는 것을 확인할 수 있었다. 경로생성 후 경로를 추적할 때는 퍼지 시스템을 이용한 경로추적 행위기와 장애물 회피 행위기를 선택적으로 사용해서 경로추적 중에 예상치 못한 장애물이 발견되었을 경우에도 장애물을 회피한 후에 계속해서 경로를 추적하는 것을 확인함으로써 경로생성 후의 외부환경변화에도 강인함을 볼 수 있었다.

In this paper, path planning and tracking problems are mentioned to guarantee efficient and safe navigation of autonomous mobile robots. We focus on the path planning and also deal with the path tracking and obstacle avoidance. We improved the conventional distance transform (DT) algorithm for the path planning. Using the improved DT algorithm, we obtain paths with shorter distances compared to the conventional DT algorithm. In the stage of the Path tracking, we employ the fuzzy logic controller to conduct the path tracking behavior and obstacle avoidance behavior. Through computer simulation studies, we show the effectiveness of the Nosed navigational algorithm for autonomous mobile robots.

키워드

참고문헌

  1. Y. Kanayama, 'A locomotion method for autonomous vehicle,' Proc. of the IEEE International Conference on Robotics and Automation, pp. 1315-1317, 1998
  2. A. Elfes, 'Sonar-based real-world mapping and navigation,' IEEE Journal of Robotics an Automation, vol. 3, no. 4, pp. 249-265, June 1987 https://doi.org/10.1109/JRA.1987.1087096
  3. A. Zelinsky, 'A mobile robot exploration algorithm,' IEEE Transactions on Robotics and Automation, vol. 8, no. 6, pp. 707-717, Dec. 1992 https://doi.org/10.1109/70.182671
  4. J. Borenstein and Y. Koren, 'Real-time obstacle avoidance for fast mobile robots,' IEEE Transactions on Systems. Man and Cybernetics. vol. 19, no. 5, pp. 1179-1187, 1989 https://doi.org/10.1109/21.44033
  5. D. Kortenkamp, R. Bonasso and R. Murphy, Artificial Intelligence and Mobile Robots, The MIT Press, 1998
  6. J. S. Zelek and M. D. Levine, 'Local-global concurrent path planning and execution,' IEEE Transactions on Systems, Man and Cybernetics, vol. 30, no. 6, pp. 865-870, 2000
  7. Shigeki Ishikawa, 'A method of indoor mobile robot navigation by using fuzzy control,' Proc. of the IEEE International Conference on Intelligent Robots and Systems, vol. 2, pp. 1013-1018, 1991
  8. H. Choset and J. Burdick, 'Sensor based planning, part I : generalized voronoi graph,' Proc. of the IEEE International Conference on Robotics and Autonomous, pp. 1643-1648, 1995
  9. Jean-claude Latombe, Robot Motion Planning, Kluwer Academic Publishers, 1991
  10. Tomas Lozano-Perez, 'Spatial planning a configuration space approach,' IEEE Transactions on Computers, vol. 32, no. 2, pp. 108-120, 1983 https://doi.org/10.1109/TC.1983.1676196
  11. Joon Seop Oh, Jin Bae Park and Yoon Ho Choi, 'Complete coverage navigation of clean robot based on triangular cell map,' Proc. of the IEEE International Symposium on Industrial Electronics, vol. 3, pp. 12-16, June 2001
  12. Lim Chee Wang and Lim Ser Yong, 'Hybrid of global path planning and local navigation implemented on a mobile robot in indoor environment,' Proc. of the IEEE International Symposium on Intelligent Control, pp. 821-826, 2002
  13. E. H. Mamdani and S. Assilian, 'An experiment in linguistic synthesis with a fuzzy logic controller,' International Journal of Man-Machine Studies, vol. 7, no. 1, pp. 1-13, 1975 https://doi.org/10.1016/S0020-7373(75)80002-2