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Abstract We consider constructing the generalized suffix array of strings A and B when the
suffix arrays of A and B are given, i.e; merging two suffix arrays of A and B. There are efficient
algorithms to merge some special suffix arrays such as the odd array and the even array. However,
for the general case that A and B are arbitrary strings, no efficient merging algorithms have béen
developed. Thus, one had to construct the generalized suffix array of A and B by constructing the
suffix array of A#S$ from scratch, even though the suffix arrays of A and B are given. In this paper,
we present efficient merging algorithms for the suffix arrays of two arbitrary strings A and B drawn
from constant and integer alphabets. The experimental results show that merging two suffix arrays
of A and B are about 5 times faster than constructing the suffix array of A#B$ from scratch for
constant alphabets.

Our algorithms include searching all suffixes of string B in the suffix array of A. To do this, we
use suffix links in suffix arrays and we developed efficient algorithms for computing the suffix links.
Efficient computation of suffix links is another contribution of this paper because it can be used to
solve other problems occurred in bioinformatics that should search all suffixes of a given string in the
suffix array of another string such as computing matching statistics, finding longest common
substrings, and so on. The experimental results show that our methods for computing suffix links is
about 3-4 times faster than the previous fastest methods.
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1. Introduction

The full-text index data structure for a text
string incorporates the indices for all the suffixes
of the text. The full-text index data structure is
used in numerous applications[1]. For example,
searching DNA sequences in a whole genome, one
of the primary operations in bioinformatics, requires
the full-text index data structure of the whole
genome. When we consider the complexity of
full-text

types of alphabets from which text T of length =

index data structures, there are three
is drawn: (i) a constant alphabet, (ii) an integer
alphabet where symbols are integers in the range
[0,2°] for a constant ¢ and (iii) a general
alphabet in which the only operations on string T
are symbol comparisons.

Two fundamental full-text index data structures
are the suffix tree and the suffix array[l]. The
suffix tree is introduced earlier than the suffix
array. The suffix tree due to McCreight[2] is a
compacted trie of all suffixes of the string. It was
designed as a simplified version of Weiner's
position tree[3]. The suffix tree is time-efficient in
that the suffix tree for a string of length # can be
constructed in O(#x) time[24-6] and a pattern of
length m can be searched in O(m) time in the
suffix tree if the size of alphabet is constant.
However, it is not space-efficient because it
consumes quite large space.

The suffix array is developed as a space-efficient
alternative to the suffix tree. The suffix array due
to Manber and Myers[7] and independently due to
Gonnet et al.[8] is basically a sorted list of all the
suffixes of the string. Since it is developed as a
space-efficient full-text index data structure, it was
not so time-efficient as the suffix tree when it was
introduced. It took O(xlogn) time for constructing

the suffix arrayl and O(m+log#n) time for pattern

1) The suffix array could be constructed in O(n) time if we first
constructed the suffix tree and then the suffix array from the
suffix tree. However. constructing the suffix array in this way
is not space-efficient.

search even with the Icp (longest common prefix)
information. However, researchers have tried to
make the suffix array as time-efficient as the
suffix tree. Recently, almost at the same time,
several algorithms have been developed to directly
construct the suffix array in O(») time[9-11]. In
addition, searching a pattern in O(m) time in suffix
arrays have been achieved[12,13].

Let A and B denote strings of lengths #z, and
n, respectively. The generalized suffix tree (resp.
array) of two strings A and B, is the suffix tree
(resp. array) of the concatenated string A# BS$.
Generalized suffix trees and arrays are useful to
solve various string processing problems occurring
in bioinformatics[1] such as finding longest common
substrings, recognizing DNA contamination, com-—
puting matching statistics, and so on. The simplest
way to construct the generalized suffix tree (resp.
array) is to construct the suffix tree (resp. array)
for A#B$ from scratch. We can construct the
suffix tree in O(n ,+n,) time for constant alphabet
due to McCreight[2}, Chen and Seiferas{14], and
Ukkonenl6], and for integer alphabet due to Farach
et al[4,5]. Also, we can construct the suffix array
in O#n,+n, time for constant and integer
alphabets due to Kim et al.[10], Ko and Alurul[l11],
and Kirkkdinen and Sanders[9].

If the suffix trees of A and B are already

N
constructed, we can construct the generalized suffix

tree in a more efficient way: We construct the
generalized suffix tree by inserting the suffixes of
B, from the longest to the shortest, into the suffix
tree of A (due to McCreight[2]), by inserting the
suffixes of A, from the shortest to the longest, into
the suffix tree of B (due to Chen and Seiferas[14]),
or by merging the suffix trees of A and B using
the structure of the suffix trees (due to Farach et
al.[4,5]).

When it comes to merging two suffix arrays,
efficient algorithms have been developed only for
some special suffix arrays. Kim et all10] developed
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merging algorithms for the odd and even arrays
where the odd array is the sorted array of the odd
“suffixes of a string and the even array is that of
the even suffixes of the string. Hon et al[l5}
developed merging algorithms for the succinctly
represented odd and even arrays. Kiarkkidinen and
Sanders[9] developed merging algorithms for two
arrays such that one array is the sorted array of

the suffixes of a string beginning at positions 7

mod 3=0 and the other is that of the other
suffixes of the string. However, to the best of our
knowledge,
algorithms have been developed for the suffix

it seems that no efficient merging

arrays of two arbitrary strings A and B.

In this paper, we present efficient algorithms for
merging the suffix arrays of two arbitrary strings
A and B. The main operation of merging suffix
arrays of A and B are searching all suffixes of
string B in the suffix array of A. For constant
alphabet, we present two merging algorithms. One
algorithm uses suffix links in suffix arrays defined
by Abouelhoda et al.[16] to do the main operation
and the other uses backward search introduced by
Ferragina and Manzini[17,18] to do the main

operation. The experimental results show that
merging two suffix arrays of A and B using our
5 times faster than

algorithms are about

constructing the suffix array of A#B$ from
scratch. For integer alphabet, we present a merging
algorithm without range minima query which
corresponds to the LCA (lowest common ancestor)
operation in the suffix trees[19].

We also present two efficient methods to
compute suffix links in suffix arrays. Until now,
the fastest running time for computing the suffix
links has been either O(zlog m)or O(n) using the
range minima query[16] where # is the length of
the string. Both of our methods runs in O(n) time
without range minima query: One is for constant
alphabet and the other is for integer alphabet. The
experimental results show that our methods for
computing suffix links are about 3-4 times faster
than the previous fastest methods for constant
alphabet.

We introduce some notations and definitions in

Section 2. In Section 3, we describe the suffix links
and present efficient algorithms for computing
them. In Section 4, we describe the construction of
generalized suffix arrays for constant alphabets. In
Section 5, we measure the running time of our
algorithm and compare it with' those of previous

algorithms.

2 Preliminaries

Consider a string S of length » over an alphabet
2 Let 87 for 1<i<n denote the ith symbol of
string S. We assume that S[#] is a special symbol
# or $ which are lexicographically larger than any
other symbol in X (# is larger than §, ie, $<#.)

The suffix array pos{l..n] of S is basically a
sorted list of all the suffixes of S. However,
suffixes themselves are too heavy to be stored and
thus only the starting positions of the suffixes are
stored
example of the pos array of accttacgacgaccttccat .
We will the starting
position of a suffix as the suffix itself.

in the pos array. Figure 1 shows an

consider, in this .paper,

The lcp array lep[1..n] of S is an array that
stores the lengths of the longest common prefix of
two adjacent suffixes in the pos array. We store in
lep[{], 2<i<n, the length of the longest common
prefix of pos{;—1] and pos[i]l. We store 0 in lcp
[1]. For example, in Figure 1, lep [3]=2 because
the length bf the longest common prefix of pos[2]
and pos [3] is 2. '

The lcp-interval of the suffix array of S, cor—
responding to the internal node in the suffix tree of
S, is defined as follows[12].

Definition 1. Interval [i..7],
Icp-interval of lcp-value / ( interval), if

1. lep [4<,

2. lep[El =1 for all i+1<k<j,

3. lep [£l=1 for some i+1<k<j, and

4. lep [j+1)KL

For example, in Figure 1, interval [1..4] is a 2
lep[11<2, lcpl[£]l=22 for all
2<k<4, lcp[3]1=2, and lcp[51K2. The prefix of an

Icp-interval [:..;] is the longest common prefix of

0<ij<n, is an

-internal because

the suffixes in pos[i..7. Figure 1 shows the

one-to-one correspondence between the lcp-
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Fig. 1 The suffix tree and array of accttacgacgaccttcca#

intervals in the suffix array and the internal nodes
in the suffix tree. The parent-child relationship
between the Icp-intervals are the same as that
between the corresponding nodes in suffix trees.
That is, an lcp-interval [i..j] is a child interval of
[£.1
node of the lcp-interval [i..j] is a child node of
[£.1.
An Icp-interval [:..j] is the parent interval of an
Icp-interval [%..7 if the Icp-interval [4../] is a
child of the [i..5].
example, in Figure 1, lcp-interval [1..4] is a child
of [1..5]
[1..5] is the parent interval of lcp-interval [1..4].

The child table cldtab, introduced by Abouelhoda
et al[l16], is the incorporation of three conceptual
tables up, down, and nextlindex.

information the

another lcp-interval if the corresponding

the corresponding node of the lcp-interval

interval Icp—interval For

interval lcp-interval and Icp-interval

It stores some

about parent-child relationship

between Icp-intervals. The child table simulates the
suffix tree where each node maintains its child
pointers by a linked list and has no parent pointer.
We can find the first index of the second child
interval of a given Icp-interval [i..7] in O(1) time
using up [j+1] and down [7]. If i up[;+1]1<j up
[/+1] stores the first index of the second child
interval. Otherwise, down [] stores it. For example,
“consider Icp-interval [18..19] in Figure 1. We first
check up [20] but it stores 17 which is smaller than
18. Then, we check down [18]. It stores 19 which is
the first index of the second child interval [19..19]
of [18..19]
lcp-interval [i..7] in O(1) time using nextlindex [:].
The nextlindex[6] stores 14 which is the first
index of the next sibling [14..15] of [6..13]. The
enhanced suffix array
array, the lcp array, and the cldtab. With this

We can find the next sibling of

is composed of the pos
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enhanced suffix array, we can efficiently solve all
problems that are usually solved by top~down

traversal of the suffix trees.

3 Computing suffix links

Suffix links introduced by Abouelhoda et al.[16]
are defined on Icp-intervals. Let ¢ and « denote a
symbol and a string, respectively. The suffix link
of a k-interval [w..v] whose prefix is ae is the
(k—1)-interval
example, in Figure 1, the suffix link of 3-interval
[12..13] whose prefix is c#t is 2-interval [18..19]
whose prefix is # and the suffix link of 2-interval

[p..q] whose prefix is a For

[1..4] whose prefix ac is l-interval [6..13] whose

prefix is a.
We store the suffix links in table slink[1..n]. Let
the suffix link of an lcp-interval [u..v] be

Icp-interval {p..q]. When we store the suffix link
of the Icp-interval [u..v], we only store the first
and the last indices of the Icp-interval [p..q], ie.,
p and ¢ We store them in slink [x] where x is the
first index of the second child interval of the
Icp-interval [u..v). For example, we store the
suffix link of lcp-interval [1..4], which is [6..13],
in slink[3] because 3 is the first index of the
[3..41 which is the second child
interval of the Icp-interval [1..4]. Since every

more children,

Icp-interval
Icp-interval has two or every
lcp-interval can store its suffix link in a unique
place. Consider the time required to access the
suffix link of an Icp-interval. If we have the child
table, we can find the first index of the second
child interval in (1) time and thus we can access
the suffix link of the Icp-interval in O(1) time.

We describe how to compute~the suffix links in
O(n) time without range minima query. We first
describe for constant alphabet and then for integer
alphabet. If the size of alphabet is constant, we can
compute all the suffix links of the lcp-intervals by
performing a preorder depth-first traversal on the
McCreight did in

constructing suffix trees[2]. During the traversal,

enhanced suffix array as
we perform the followings every time we encounter
an lcp-interval [:..7] of an lcp-value £

1. Let [w..v] be the parent interval of lcp-interval

[i..7]] and % be the length of prefix of the
parent interval [w..v]. Let [x..y] be the suffix
[w..v]). The suffix
link [x..y] was already computed because we

link of the parent interval

compute the suffix links by performing the
preorder traversal. Thus, we can find the suffix
link [x..y] in O(1) time.

2. In order to find the Icp-interval of lcp-value
I—1, we traverse down the enhanced suffix
array from Icp-interval [x..y] wusing the
substring S[i+ &, .i+1—2].

The analysis of running time of this algorithm is
very similar to that of McCreight’s algorithm for
suffix trees and thus we get the following lemma.

Lemma 1. We can compute all the suffix links
in O(nl) time for constant alphabet.

However, if we are to compute the suffix links
Oo(n?

time. We describe how to compute the suffix links

for integer alphabets, this approach takes

for integer alphabets in O(») time. Since the suffix
links

[1..n], we only consider the suffix links of #

of 1l-intervals is trivially the O-interval

—intervals, £>2. We start with presenting a key
property that enables one to compute the suffix
links in O(») time. Let
whose prefix is aa
[#u].. ¥Lu]] where ®[i=pos  [pos[il+1]. From
the definition of ¥, all the suffixes in pos
[®l«].. ¥lv]] has the prefix o We call this

interval the ¥-interval of [w..v). (The ®-interval

[u..v] be a Fk-interval

Consider the interval

of [w..v] may not be an Icp-interval but it does
not matter.) From the fact that all the suffixes in
pos [P u].. #[v]] has the prefix e« and all the
suffixes whose prefixes are a should be stored in
pos [p..q] where [p..q] is the suffix link of [u..v],
we get the following lemma.

Lemma 2. The suffix link [p..q] of an lcp—
interval [#..v] contains the ®@-interval of [w..v],
ie, p<¥lul<Pv]l<q

By this lemma, finding the suffix link of a &%
-interval [«..v] is finding the (&—1)-interval
[i..7] containing the @-interval of [«.,v]. (Note
that only one (k—1)-interval contains the ¥
-interval of [u..v] because no two (k—1)-intervals

overlap.) For example, in Figure 2, the ¥-interval
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Fig. 2 The relationship between (k-1)-intervals and ¥ -intervals of k-interval.

of 2-interval [18..19] is [16..17). The suffix link
of [18..19] is [16..19] because l-interval [16..19]
contains [16..17]. ‘

Computing the suffix links consists of three
steps. In these steps, we maintain two multiple
lists L[z and M:, 1<i(n We use L[:] to store i
-intervals and M to store the ¥-intervals of ¢
~intervats.

Step 1. Compute L We perform an inorder
traversal on the enhanced suffix array. If we

encounter a kA-interval [«..v], we insert [u..v]
into L[Zl. Note that the Fk-intervals in L[4] is
sorted in the increasing order of the first indices of
the k-intervals.

Step 2. Compute N For each lcp-interval [u..v]
in L[k], 2<k<n—1, we compute the ¥-interval of
[#..v] and insert it into M#k]l. We sort the &
-intervals in M#£] in the increasing order of the
first indices of the intervals for every 2<k<n—1.
This can be done in O(x) time by bucket sorting
of size »—1 using backward pointers[20,21].

Step 3. For the k-intervals in L[Z], 2<&<n—1,
we compute the suffix links as follows. For every
[#1u].. #[2]] in Mk, we find the
(k—D-interval  [p..¢lin  L[k—1] that
p< Pl u]l<Plv]l<q. Then, we set the suffix link of %
{t..4]
the intervals in M#] and L[k—1] are sorted in the

increasing order of the first index of the intervals,

P-interval
such
(k—1)-interval Since

-interval [{w..v] as

we can find all the suffix links of A-intervals in
O(c(k) + c(k—1)) time where (i) is the number of

~intervals. Overall, step 3 can be performed in

O(n) time,

Since all steps are performed in O(n) time, we
get the following lemma.

Lemma 3. We can compute all the suffix links
in O(») time for integer alphabet without range

minima query.
4. Constructing generalized suffix arrays

We describe how to construct the generalized
suffix array of A and B when the suffix arrays of
A and B are given, i.e., merging two suffix arrays
of A and B. Let n and m denote the length of A
and B, respectively. We first describe merging the
suffix arrays using suffix links and then using
backward search.

4.1 Using suffix links

Let poss and posp denote the suffix arrays of A
B, Let posg the
generalized suffix array of A and B. Merging posa

and respectively. denote
and poss consists of two steps and requires an
additional array C{1..z].

Step 1. We count the number of suffixes of B
that are larger than the suffix posa[i—1] and
smaller than the suffix poss[i for all 1<i<x and
il aid,

1<:<#n, we do the following.

store the number in To compute

1. Initialize all the entries of array C{1..x] to
Z€ero.

2. Construct the child table cldtabs in O(n) time.

3. Construct the suffix link table slinks in O(#n)
time as we described in the previous section.

4. Search the suffixes of B in poss, from the
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the suffix array of string A

o1 101 1

a v
1&gl .
o

the suffix array of string A#BS$

Fig. 3 Merging the suffix arrays of A a_nd B

longest to the shortest. This can be done in
O(m3]) time using tables cldtabs and slinka.
During the search, we increment (7 if a
suffix of B is larger than poss[:i—1] and
smaller than posa [7].

Step 2. We store the suffixes in posa and posg
into posg using array C. Let p, 1<i<sn denote
prefix sum C({1]+--+C{z]. We should store the
suffix posa[i] of A intd posg [i+p;] because p;
suffixes of B are smaller than posa[7. We should
store the suffixes posg[p,;+1..p;4+1] of B into posg
[i+p;+1..i+p;+1] because i suffixes of A are
smaller than the suffix posg[jl, p;+1</<p;+1. To
store the suffixes of A and B into posg in
O(n+m) time, we do the following: We store the
suffixes into pos¢ from the smallest to the largest.
We first store C([1] smallest suffixes of B into
poss and then we store the suffix posa[l] of A
into poSg. 2] smallest
suffixes of B then store the suffix poss[2] of A.

Then, we store next

We repeat this procedure until all the suffixes of A

and B are stored in posq. Consider the example in
(11]1=3, we store the three
smallest suffix posp[1..3] of B into posg[1..3]
and store the suffix posa[l] of A into posgl[4].

Figure 3: Since

Since (12]1=0, we store no suffixes of B and then
store the suffix posa[2] of A into posg[5].
Consider the time complexity of this merging
algorithm. Since the step 1 takes O(n+m3)) time
and step 2 takes O(n-+m) time, Merging poss and
O(n+m3]) time. Hence, we get the

following lemma.-

posg takes

Lemma 4. We can merge two suffix arrays of
A and Bin O(n+m3l) time with suffix links.

4.2 Using backward search

The
Ferragina and Manzini[17,18].

introduced by
it to
develop an opportunistic data structures that uses

backward search was

They used

Burrow-Wheeler transformation[22]. The backward
search has been used to search patterns in com-
pressed suffix arrays[23-25] which are suggested
by Grossi and Vitter[26]). Hon et al.[15] introduced
the backward search to merging the succinctly
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represented odd and even arrays.

Now, we consider merging poss and posp using
backward search. Merging using backward search
is the same as merging‘ using suffix links except
computing the array C in step 1. Thus, we only
describe how to compute array C

1. Initialize all the entries of array (I1..x] to
Zero.

2. Generate a data structure for the backward
search in poss in O(x) time.

3. Search the suffixes of B in posa from the
shortest to the longest: This can be done in
O(m- tps) time where fzs is the time to

search a suffix of B using the backward
search. During the search, we increment (7]
if a suffix of B is larger than poss[i—1] and
smaller than posa [7].

N
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Consider the time complexity of this merging
algorithm. Since the backward search in step 3
takes O(m- tps) time and the other parts of the
O(n) this
algorithm takes O(n+m- tgs) time. Hence, we get

merging step take time, merging
the following lemma.

Lemma 5. We can merge two suffix arrays of
A and B in O(n+m- tgy) time using backward
search. '

Sim et alll3] developed a data structure that
makes the backward search fast in the suffix
arrays. Using their data structure, we can search a

suffix of B in O(logl2]) time, i.e., fgs= log|3.

5. Experimental results

We measure the running time of constructing the
generalized suffix array for two strings of the

Build Merge using suffix links Merge using backward search
length A#B$ DS | search [ total | ratio(%) DS I search ‘ total l ratio(%)

[21=2

1M 48 0.3 0.8 1.1 228 0.3 1.0 1.3 26.8

5M 26.3 1.2 46 58 22.9 1.7 56 73 289

10M 514 2.8 10.7 135 26.2 3.3 12.2 15.5 30.1

30M 164.8 11.3 38.2 495 30.0 10.1 40.7 50.8 309
131=4

M 6.0 04 09 1.3 205 0.3 1.0 1.3 21.3

5M 30.7 14 45 59 19.0 15 59 7.4 239

10M 61.5 26 10.3 12.9 209 3.1 12.4 155 252

30M 291.7 11.0 38.0 49.0 16.8 9.3 415 50.8 17.4
12=64

M 3.8 0.9 51 6.0 157.9 0.2 0.8 1.0 26.5

5M 40.4 42 11.8 16.0 39.7 1.0 6.0 7.0 17.6

10M 82.8 78 11.7 195 235 2.2 125 147 17.8

30M 2577 14.8 34.6 494 19.2 7.2 435 50.7 19.7
[21=128

M 4.0 11 20.2 21.3 526.2 0.2 0.6 0.8 204

5M 42.8 89 534 62.3 © 1453 0.9 44 53 124

10M 87.8 21.9 455 67.4 76.7 2.0 12.0 14.0 16.0

30M 269.6 43.6 37.2 80.8 30.0 6.9 42.1 49.0 18.2

Fig. 4. The experimental results for constructing the generalized suffix arrays. We used Karkkiinen and

Sanders’s algorithm for constructing the generalized suffix arrays from scratch and we used Sim

et al.’s[13] data structure for the backward search. We measured the running time in second on
the 2.8Ghz Pentium IV with 2GB main memory.
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same length using our merging algorithms and
compare it with constructing the generalized suffix
array from scratch. We generated different kinds of
random strings which are differ in lengths (1M,
5M, 10M, and 30M) and in the sizes of alphabets
(2, 4, 64, and 128) from which they are drawn.
Figure 4 shows that constructing the generalized
suffix array by merging two suffix arrays using
suffix links and backward search is about 5 times
faster than constructing the generalized suffix array
from scratch. Figure 4 also shows that merging
using suffix links is faster when the size of
alphabet is small (2 or 4), and merging using
backward search is faster when the size of
alphabet is quite large (64 or 128). This result is
consistent with the running time analysis of the
merging algorithms. (Merging using suffix links
runs in O(z+m2) time due to Lemma 4 and
merging using backward search runs in
O(n+mlog|3) time due to Lemma 5 and Sim et
al.)

We made experiments on merging the suffix

arrays of two strings of different lengths. We can
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merge the suffix arrays either by searching the
shorter string in the Vsufﬁx array of the longer
string or by searching the longer string in the
suffix array of the shorter string. Figure 5 shows
that the former is faster. For example, when we
merge two strings of lengths 10M and 2M for
|51=4, searching the string of length 10M in the
suffix array of the string of length 2M takes 9.0
seconds and searching the string of length 2M in
the suffix array of the string of length 10M takes
46 seconds. This result is consistent with the
result that searching takes more time than con-
structing the suffix links shown in Figure 4.

In addition, we measure the running time of our
method to compute suffix links and compare it with
the two previous methods suggested by Abouelhoda
et all[16). Two previous methods are denoted by '
O(nlogn) and ' O(x) with RMQ' in Figure 6. We
generated different kinds of random strings which
are differ in lengths (1M, 5M, and, 10M) and in the
sizes of alphabets (2, 4, and 8) from which they
are drawn. Figure 6 shows that our method

compute the suffix links about 3-4 times faster

string A string B Merge using suffix links Merge using backward search
length( =) length( m ) |21=2 |21=4 |31=128 131=2 121=4 |3 =128
2M 1M 39 39 85.1 5.0 55 3.3
AM M 2.7 2.8 36.7 39 3.8 2.8
2M 6M 5.7 5.6 1179 7.3 75 47
6M 2M 35 35 27.0 48 4.7 36
2M 10M 9.1 9.0 1976 11.7 12.2 7.8
10M M 49 46 29.1 65.2 12.7 50

Fig. 5 The experimental results for merging the suffix arrays of two strings of different lengths.

alphabet [21=2 |2 =4 |[21=8
length M 5M | 10M | 1M 5M | 10M | IM | 5M | 10M
O(nlog n) 111 | 576 | 1242 | 093 | 557 | 1216 | 070 | 532 | 1198
O(n) with RMQ 231 | 1651 | 3751 | 215 | 1511 | 3656 | 197 | 1408 | 3392
Ours 027 | 129 | 273 || 033 | 135 | 253 | 042 | 162 | 296
O(nlogn) /Ours 4.1 45 46 28 41 438 1.7 3.3 4.0
O(n) with RMQ/Ours 85 128 | 138 | 65 112 | 145 | 47 87 | 115

. Fig. 6 The experimental results for computing the suffix links.
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than the previous fastest method.

6. Conclusion

We presented two fast algorithms for merging
two suffix arrays of A and B when the suffix
arrays of A and B are given. One uses suffix
links and the other uses backward search method.
The that
algorithm that uses suffix links is faster than the

experimental results show merging

other algorithm when the alphabet size is small.
We also presented two efficient algorithms for
computing suffix links in our data structure. Our
algorithms can run in linear time without range
minima query. It is the first practical linear time
algorithm for computing suffix links because the
range minima query operation that is used in the
previous linear time algorithm is theoretical. We

can find the longest common substring and

compute matching statistics fast with suffix links.
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