Aula} MG e o] 87 HBA B

Hul A wjg-S o] &3 AFX T &A
(Linear-Time Search in Suffix Arrays)

+ + = tH
Ny T u 8| Z

[=] [

(Dong Kyue Kim) (Heejin Park)

Tt
AL
tll-:l._l_

(Jeong Seop Sin) (Kunsoo Park)

2 o AL AEFo} FAL A Fopol s &&FE HE w4 A Ara 229 A
oAb Wi e Qux AgTEyl dE] AMEEe] guh AuAl EE o83 HE gao] At
e ol &% FAEG A BRE AN o mE ez dA frh F, A5 A7) Lo Al
e PE Aol nl d2EeN g5y 3 FuAk Edle O(PNHARIe] Bad v AHA Wde
O(LPrlogn) Azte) Basith B wRolNE A5 27 g dia Fulab e o) &d APz
g4 dxEEE AT £ 2uEFe 9uEd gyl Ba disixe O Pllog|Z)ARel Easith
F19= ¢ EAE A, HE 24, Aeja wig, Heiah £

Abstract To search a pattern P in a text, such index data structures as suffix trees and suffix
arrays are widely used in diverse applications of string processing and computational biology. It is well
known that searching in suffix trees is faster than suffix arrays in the aspect of time complexity, i.e.,
it takes O(|PI) time to search P on a constant-size alphabet in a suffix tree while it takes O(|P]|
+logn) time in a suffix array where n is the length of the text. C

In this paper we present a linear-time search algorithm in suffix arrays for constant-size alphabets.
For a general alphabet %, it takes O(|P|loglX]) time.

Key words : string processing, pattern search, suffix arrays, suffix trees

1. Introduction

Suffix trees and suffix arrays are important
index data structures in diverse applications of
string processing and computational biology. The
suffix tree due to McCreight [1] is a compacted
trie of all the suffixes of a string 7. It was
designed as a simplified version of Weiner's
position tree [2]. The suffix array due to Manber
and Myers [3] and independently due to Gonnet et
al. {4] is basically a sorted list of all the suffixes

of a string T.

- This work was supported by Korea Research Foundation grant
KRF-2003-03-D00343.

t 23 Qe AFEIHY 25
jssim@inha,ac.kr
H FANY - RAdEa A RE TR aF
dkkiml@pusan.ac.kr
H 239 fdide RSN a5
hjpark@hanyang.ac.kr
H 2A29 - Nedtn AFEIRY 35
kpark @theory.snu.ac.kr
=84 0 2005 19 249
AATEE 20056 3¥ 169

Despite simplicity of suffix arrays, suffix trees

have been the most fundamental index data
structures in the literature [5], [6] because suffix
arrays were inferior to suffix trees in the following
aspects.

(1) Construction Suffix trees

constructed in linear time for an integer alphabet,

time: can be
while constructing suffix arrays takes O(nlogn)
time even for a constant-size alphabet [3],[7].
(Suffix arrays can be constructed from suffix trees
in linear time, but it has been an open problem
whether suffix arrays can be constructed in
O(nlogn) time without using trees.)

(2) Search time: In suffix trees a search for a
pattern P can be done in O(|P|log|Z|) time for an
alphabet X, while it is done in O(|P]+logn) time in
suffix arrays. In search time, suffix trees are better
than suffix arrays for a constant-size alphabet, but
the opposite is true for other cases.

Recently, however, there has been vigorous rese-

arch on suffix arrays [8-12]. For the construction

256 AR =EA

of suffix arrays, Karkkiinen and Sanders [10] and
Kim et al. [11] independently developed a linear—
time suffix array construction algorithm. The two
algorithms are both wusing divide-and-conquer
approach [13], [5], [14], ie., (i) recursively construct
partial suffix arrays, (ii) construct the suffix array
of the remaining suffixes, (iii) merge the two suffix
arrays into one. Almost at the same time, Ko and
Aluru devised an interesting linear-time suffix
array construction algorithm [12]. They used simple
and nice properties of suffixes of a string.

For the search time in suffix arrays, Abouelhoda
et al. developed an O(|P||2Z|)-time search algo-
rithm [15]. In this paper, we present an O(|P|log
|Z[)-time search which uses an interesting idea
developed by Ferragina and Manzini in the context
of compressed pattern matching [16]. Our algorithm
is faster and simpler than Abouelhoda et al’s
algorithm [15]. The additional

search P efficiently in our algorithm is O(n).

space needed to

This paper is organized as follows. In Section 2,
we define some notations. In Section 3, we explain
our search algorithm and the data structures. In

Section 4, we copclude.

2. Preliminaries

2.1 Basics

We first give some definitions and notations that
will be used in our algorithm. Consider a string T
of length n over an alphabet X. T1i] denotes the
ith symbol of string T and T7TIij] the substring
starting at position [and ending at position j in 7.
We assume that T[n] is a special symbol # which
is lexicographically smaller than any other symbol
in X and appears only once in T. Let S;, 1<i<n,
denote the suffix of T that starts at position i.

The suffix array Ar is the lexicographically
ordered list of all suffixes of T. That is, A-il = if
S; is lexicographically the ith suffix among all
suffixes $1,5s,...,.5» of T.

22 Uand V

Consider the problem of searching 7T for a
pattern P over alphabet 2. Let p=|P| and n=|TI.
Let o; be the jth smallest symbol in X and
assume oo is the special symbol #.

VIil=T{A-A{d]l and

We define two arrays:

Al g oolg A 2 @ A 5 (066

Uli=TIA-i-11 for 1<i<n (assume TI0]-# for
convenience), ie., V is the array of the first sym-
bols in the sorted list of all suffixes of T and U is
the array of previous symbols of V. See Figure. 1.
We use U and V only conceptually; we do not
make them but access them in constant time with
T and Ar. The idea of searching with U and V
was developed by Ferragina and Manzini [16] to
find patterns in a compressed file. A similar idea in
a compressed suffix array was given by Sadakane
[17].

U
b ST

b aiababbb#

b a:i baababbb#

a a; babbb#

a:i bbabaababbb#
b a: bbb#

b bi#

a bi aababbb#

b bi abaababbb#
a b: abbb#

b b:b#

a b i babaababbb#
a b: bb#

Fig. 1 Arrays U and V when T=abbabaababbb#

Let Ml gjl, 0<j<|3|, be the position of the first
occurrence of ¢; in V. When o¢; does not occur in
T, Mloj]=Mlos;} where oj is the lexicographically
smallest symbol that occurs in T and o¢;< gj.
Array M logically partitions V by each symbol o;
occurring in 7. We define a function N:{0,1,...,n}X
{oo,.,012}—{0,1,...n-1}. N(i,0;) is the number of
occurrences of o¢; in Ull,). For convenience, we
assume N(0,0,)=0 for 0<j<|31.

For example, if T-=abbabaababbb# and X={a b},
then Ar=1{13,64,7,19,12538,11,2,10}, V= (£a,aaa,.q,
bb,b,b,bbb), and U= (bbba#bbababaa). See
Figure. 1. Also, M=(1,2,7) and N(1,#)=0, N(1,a)=0,
N,b)=1,--, N(7#=1, N(T@)=1, N(7b)=5-, N(13#)
=1, N(13,@)=5, N(13,b)=7.

L NEUEESOES

3. Linear-Time Search

3.1 Search Algorithm

We search for P from the last symbol to the
first symbol of P. Note that P occurs at position {
of T if and only if the suffix S; of T has P as its
prefix. Assume we know all the positions where
Plh+1, p] occurs in T. Then we can find the
positions where Plhp] appears in T as follows. If
there exists any suffix of T that has P[A+1, p] as
its prefix and its previous symbol is Pl[Al, then
Plhpl appears in 7. Since U is the array of
previous symbols of the sorted suffixes and the
Plht1, p]
contiguous in Ar, we check if P[A] exists in the

positions where occurs in T are
corresponding positions by using U. If it does, we
find the positions where Plhp] occurs in T using
the following lemma.

Lemma 1. Let St be the ith lexicographically
smallest suffix of all the suffixes of T that start
with 6, Then Sk is the (Mloj+i-1)st lexico-
graphically smallest suffix among all the suffixes of 7.

QOur algorithm is divided into p phases. Assume
that M and N are available. At the beginning of
the Ath phase from h=p to 1, we know all the
positions where Plh+1, p} occurs in T. In fact, we
maintain the start position ps and end position p. of
Plh+1, p]
Initially, ps=1 and p.=n. (At the beginning when

the contiguous block where occurs.
h=p.) In the hth phase, we find all the positions
where Plh, p] occurs in T. That is, we update ps
and pe so that all occurring positions of P[A, p] in
T are Adpsl,..,Arlp.. The new start and end
positions are set to MI{P[A]]+N(ps-1,Plh]) and
MIPIRI+N(p.,PlhD-1, respectively.

We now show the correctness of this algorithm.
Consider the Ath phase of our algorithm. Assume
there are { number of occurrences of P[h] in the
current block of Ulpspel and the first occurrence of
them is the jth occurrence of Plh] in U. Consider
the suffixes that start with PlA]l in Ulpspel. By
Lemma 1, the new start and end positions are
MIP[A1]+j-1 and MIPlAI}+j-1+i-1, respectively. By
N, j=N(ps—1,P[R])+1 and

Hence, this

definitions of M and
i=N(pe,Plh])~-N(ps—1,PLR]).
correctly sets the new values of ps and p.. Note

algorithm

& ABAT 7Y 257

that if ps > pe, then there exist no occurrences of P
in T.

For the above example when T=abbabaababbbi
and P=aba, the initial value of ps and p. are 1 and
13, respectively. In the phase of h=3, we find all
the positions where P[3,3]=a occurs in 7. That is,
the new ps=2 and the new p.=6. See Figure. 2.
Next, in the phase of h=2, we find all the positions
where P[2,3]=ba occurs in T. All the occurrences of

ba must appear between ps and p. in Sg,, the sor-

ted suffixes of 7. Thus, the new ps=MI[PI[2]}+
N(ps-1,P[2D)=M[b}+N(2-1,b)-7+1=8, and the new
pPe=MIP[211+N(p., P[2])-1=MI[bl+N(6,b)-1=T7+4-1=10.
It means that ba occurs at A7l8l, A79], and
Arl10]. See Figure. 3. In the phase of A=1, we find
all the positions where P[1,3]=aba occurs in T.
Thus, the new ps==MI[P[111+N(ps-1, PI1D)=Mlal+
N(8-1@)=2+1=3, and the new p.=M[P [1]1+N
(p,PI11)-1=Mlal+N(10,0)-1=2+3-1=4. Therefore, P
appears at the positions A7{3]=4 and Ar4]=7 in T.
See Figure. 4.

U

b - .

b ababbb# now B
b baababbb#

a babbb#

bbabaababbb#

b i bbb# new 2.
b b #

a bi aababbb#

b b abaababbb#

a b abbb#

b b b#

a bi babaababbb#

a b: bb# A

TFig. 2 Search P=aba in T=abbabaababbb#.(h=3)

3.2 Preprocessing and query for N(i,o ;)

We now explain how to preprocess Ar to
construct array M and make data structures for
function N. We can construct array M in O(n)
time by scanning V once and it needs O(I3))
space. We first explain how to answer a query N(,

258 BRAGE=EA A" B o] Al 2 A A 5 Z20H6)

a; baababbb#

babbb#
bbabaababbb#

bbb#! 2

Ss

new P,

Sg

new P,

babaababbb#
bb#

ababbb#

new P,
new P,
S4
Sy 1]
I A
b bi b#
a b babaababbb#
a b: bb#

Fig. 4 Search P=aba in T=abbabaababbb#.(h=1)

¢;) in O(logn) time; then we give a solution that
takes O(log|2|) time.

First, we describe an O(logn) time solution for
query N(i,¢;). We make two arrays: Y of size O(n)
and Z of size O(121). Let n; denote the number of

total occurrences of ¢; in U and g= o§<-"*
7

(assume a=0). For the above example of
T=abbabaababbb#, ay=0, a1=1, az=6. For 0<j<|3|,
Zlj] stores a; and Ylaj + m] stores the place of mth

occurrence of o; in U. See Figure. 5. We can
make Y and Z in O(n) time by scanning U.

With Y and Z, we can answer a query N(, o))
in O(logn) time. First, we find @ and g+ by
accessing Z[jl and Z[j+1]. Then we do a binary
search on Y[gi+1],-Ylgj]
such that YIkl<i. Then, the number of occurrences

to find the maximum k

of ¢; in Ull,] is k-@, which is the answer to
query N(,o;). For the query N(8,a) on the above
example, we first access Z[1] and Z[2] to find ai=1
and az=6. Now we do a binary search on YI[26] to
find Y[3]=8. Thus, the number of occurrences of a
in Uf1,8]=3-1=2. See Figure. 5. Since the portion of
Y we search can be of size O(n), this solution
takes O(logn) time in the worst case for a query
NG, a).

z | #] a] £]

vy |5]4]8]wof12[13[1]2]3]6[7]9]11]
a, a,
Fig. 5 Arrays Y and Z when T=abbabaababbb#

For an Ollog|Z1)-time solution for query N(, o)),
we divide U into blocks of size |2| to reduce the
size of Y to |3]. Let U’ for 1<i<n/|Z| be the ith
block of U and s; and e; be the start position and
end position of U, respectively. First, we make a
two dimensional array X of size O(n). X[ij], 1<i<
/121 and 0<j<i3,
occurrences of ¢, in Ull,e]. Array X can be made

stores the number of

in O(n) time by scanning U. Second, as in the
we make two
ni be the

O(logn)-time solution,

arrays Y and Z for each U. Let

previous

number of occurrences of ¢; in Ui and «j= Og}n},.
7

For 0<j<|3|, Z1j] stores a! and Y7 ai+m] stores
the place of mth occurrence of ¢, in U’ Both Y'
and Z' can be made in O(IZ|) time by scanning
U since U has |3 elements.

Now we can answer query N(i,¢;) in O(log|21)
time. First, we find the block U" such that w=[i/
22I1. Then, we access Z" to find ¥ and do a
binary search on Y[e/+1],--Y"[a¥,] to find the
maximum k such that Y"[k]<i. Then, N(io0;)=
Xtw-141+k- af.

AL MR o) ge HAT B 259

4. Conclusion

In this paper, we proposed an O(]|P]log|>{)-time
algorithm for searching P in a text on an alphabet
2. This result equips suffix arrays with the same
search time as suffix trees. Therefore, the suffix
array is more powerful than the suffixtree in the
sense that it has a choice of O(|Pllog|XI) or O(|P|
+logn) search time depending on the alphabet size.

References

[1] EM. McCreight, A space-economical suffix tree
construction algorithm, J. Assoc. Comput. Mach,
vol. 23, pp. 262-272, 1976.

[2]1 P. Weiner, Linear pattern matching algorithms,
Proc. 14th IEEE Symp. Switching and Automata
Theory, pp. 1-11, 1973.

[3] U. Manber and G. Myers, Suffix arrays: A new
method for on-line string searches, SIAM J.
Comput., vol. 22, pp. 935~938, 1993.

{41 G. Gonnet, R. Baeza-Yates, and T. Snider, New
indices for text: Pat trees and pat arrays. In W.

B. Frakes and R. A. Baeza-Yates, editors, Infor- -

mation Retrieval: Data Structures & Algorithms,
pp. 66-82. Prentice Hall, 1992.

[51 M. Farach-Colton, P. Ferragina and S. Muthu-
krishnan, On the sorting-complexity of suffix tree
construction, J. Assoc. Comput. Mach., vol. 47, pp.
987-1011, 2000.

[6]1 D. Gusfield, Algorithms on Strmgs Trees, and
Sequences, Cambridge Univ. Press, 1997.

[7] D. Gusfield, An "Increment~by-one” approach to
suffix arrays and trees, manuscript, 1990.

[8]1 S. Burkhardt and]. Karkkiinen, Fast lightweight
suffix array construction and checking, Symp.
Combinatorial Pattern Matching, LNCS 2676, pp.
55-69, 2003.

[9] W. Hon, K. Sadakane, and W. Sung, Breakmg a
time-and-space barrier in constructing full-text
indices, Proc. IEEE Symp. Found Computer
Science, pp.251-260, 2003.

[10] J. Karkkiinen and P. Sanders, Simple linear work
suffix array construction, Int. Collog. Automata
Languages and Programming, LNCS 2719, pp.
943-955, 2003.

[11] D. Kim, J.S. Sim, H. Park, and K. Park, Linear-
time construction of suffix arrays, Symp. Combina-
torial Patterm Matching, LNCS 2676, pp. 186-199, 2003.

[12] P. Ko and S. Aluru, Space efficient linear time
construction of suffix arrays, Symp. Combinatorial
Pattern Matching, LNCS 2676, pp. 200-210, 2003.

[13] M. Farach, Optimal suffix tree construction with
large alphabets, IEEE Symp. Found Computer
Science, pp. 137-143, 1997.

[14] R. Hariharan, Optimal parallel suffix tree construc-
tion, J. Comput. Syst. Sci., vol. 55, pp. 44-69, 1997.

[15] M. Abouelhoda, E. Ohlebusch, and S. Kurtz,
Optimal exact string matching based on suffix
arrays, International Symposium on String Pro-
cessing and Information Retrieval, LNCS 2476,
31-43, 2002.

[16] P. Ferragina and G.. Manzini, Opportunistic data
structures with applications, JEEE Symp. Found.
Computer Science, 390-398, 2001.

[17] K. Sadakane, Succinct representation of lep infor—
mation and improvement in the compressed suffi-
xarrays, ACM-SIAM Symp. on Discrete Algori-
thms, pp. 225-232, 2002.

I
19959 MEeUSE AFHTHR A
19979 Aedhsm AFEFSHE Aa
20024 MeUsT AFEFHR 4}
20029 3€~2004d 8¢ A=AAFAA
79 vole AR ATY AYATY, 2004
9 9U~EA QSE BFHI G
AU BARORE AFE OB ¥ VI, 4BRRY

HE -

19923 AMehdtn AFEZEF AL
19949 AMedigtn AFEHITEI A4}
19999 AMegdisn AFEHIEIH A}
19999 ~8A, FAdgw AFEF
Z3e. BYRore ¢5E @ dmaE,
AFE Bt Al2" Bioinformatics.

a3 7
19909 38~1994d 28 Meuista 2
FE1Z8a AL 19943@ 3¥~19969 2
4 Mevista ARE TR HAL 1996
W 39~2001d 29 AListn AFE
F8ka BkAL 2001 3€~20039 29 A

: eojstn PEHATL AFATY. 2003
d 29~2003 8¢ olgelAtsta AHE St} BKATRE
2. 20034 99~8A PARET FREAUNY YA
BARokE FYE, JEUNE

v

1983¢ Aguistn AFEFE FA)
1985 Medista AFEFEE 44}
019913 €= Columbia ©tx HAYst
gRAL 1991 119~1993d 89 o= &
Agstw King's College Zn4~ 1995
Te: 3 79~19959 8¥ 33 Curtin W&
%% 199349 89 ~#A Aecistn HEHTEE @
-E* Fe AFECIE, 4EFRE, g58

&)
>.

