Efficient Expression of a Carbon Starvation Promoter Activity Under Nutrient-Limited Chemostat Culture

  • KIM DAE-SUN (Division of Biotechnology, Catholic University of Korea) ;
  • PARK YONG-IL (Division of Biotechnology, Catholic University of Korea) ;
  • LEE HYANG BURM (School of Biological Sciences, Seoul National University) ;
  • KIM YOUNGJUN (Division of Biotechnology, Catholic University of Korea)
  • Published : 2005.06.01

Abstract

The promoter region of a carbon starvation gene isolated from Pseudomonas putida was cloned and analyzed for its potential use for in situ bioremediation and bioprocessing. We constructed a recombinant plasmid pMKD101 by cloning the 0.65 kb promoter region of the gene into the promoter proving vector, pMK301, which contains the lacZ for ${\beta}$-galactosidase activity as a reporter gene. pMKD101 was transformed into the wild-type P. putida MK1, resulting in P. putida RPD101, and analyzed for ${\beta}$-galactosidase activity under different culture conditions. When RPD101 was grown on the minimal medium plus $0.1\%$ glucose as a sole carbon source in batch cultures, ${\beta}$-galactosidase activity was found to be 3.2-fold higher during the stationary phase than during the exponential phase. In chemostat cultures, ${\beta}$-galactosidase activity was found to be 3.1-fold higher at the minimal growth rate (dilution rate=$0.05\;h^{-1}$) than at the maximal growth rate (dilution rate=$0.173;h^{-1}$). The results suggest that a carbon starvation promoter can be utilized to maximize the expression of a desired gene under nutrient limitation.

Keywords

References

  1. Ghiorse, W. C. and J. J. Wilson. 1988. Microbial ecology of the terrestrial subsurface. Adv. Appl. Microbiol. 33: 107-172 https://doi.org/10.1016/S0065-2164(08)70206-5
  2. Henis, Y. 1987. Survival and dormancy of bacteria, pp. 1-108. In Y. Henis (ed.), Survival and Dormancy in microorganism. John Wiley & Sons, New York, U.S.A
  3. Herrero, M., V. Lorenzo, and K. Timmis. 1990. Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in Gram-negative bacteria. J. Bacteriol. 172: 6557-6567 https://doi.org/10.1128/jb.172.11.6557-6567.1990
  4. Hopkins, G. D., L. Semprini, and P. L. McCarty. 1993. Microcosm and in situ field studies of enhanced biotransformation of trichloroethylene by phenol-using microorganisms. Appl. Environ. Microbiol. 59: 2277-2285
  5. Isken, S., A. Derks, P. F. Wolffs, and J. A. de Bont. 1999. Effect of organic solvents on the yield of solvent-tolerant Pseudomonas putida S12. Appl. Environ. Microbiol. 65: 2631-2635
  6. Karel, S. F., S. B. Libicki, and C. R. Robertson. 1985. The immobilization of whole cell: Engineering principles. Chem. Eng. Sci. 40: 1321-1354 https://doi.org/10.1016/0009-2509(85)80074-9
  7. Kim, Y. and A. Matin. 1994. Starvation genes, promoters and starvation survival fusion mutants of Pseudomonas putida, pp. 344-356. In M. Levin, C. Grim, and J. S. Angle (eds.). Proceeding of the Biotechnology Risk Assessment Symposium, College Park, Maryland
  8. Kim, Y., L. S. Watrud, and A. Matin. 1995. A carbon starvation survival gene of Pseudomonas putida is regulated by sigma-54. J. Bacteriol. 177: 1850-1859 https://doi.org/10.1128/jb.177.7.1850-1859.1995
  9. Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  10. Matin, A. 1994. Starvation promoters of Escherichia coli: Their function, regulation, and use in bioprocessing and bioremediation. Ann. N. Y Acad. Sci. 721: 277-291 https://doi.org/10.1111/j.1749-6632.1994.tb47401.x
  11. Matin, A., C. D. Little, C. D. Fraley, and M. Keyhan. 1995. Use of starvation promoters to limit growth and selectively enrich expression of trichloroethylene- and phenol-transforming activity in recombinant Escherichia coli. Appl. Environ. Microbiol. 61: 3323-3328
  12. Miller, J. H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  13. Pandza, S., M. Baetens, C. H. Park, T. Au, M. Keyhan, and A. Matin. 2000. The G-protein F1hF has a role in polar flagellar placement and general stress response induction in Pseudomonas putida. Mol. Microbiol. 36: 414-423 https://doi.org/10.1046/j.1365-2958.2000.01859.x
  14. Park, D. W., J. H. Lee, D. H. Lee, K. Lee, and C. K. Kim. 2003. Sequence characteristics of xylJQK genes responsible for catechol degradation in benzoate-catabolizing Pseudomonas sp. S-47. J. Microbiol. Biotechnol. 13: 700-705
  15. Semprini, L., P. V. Roberts, G. D. Hopkins, and P. L. McCarty. 1990. In field evaluation of in-situ biodegradation of chlorinated ethenes. 2. Results of biostimulation and biotransformation experiments. Ground Water 28: 715-727 https://doi.org/10.1111/j.1745-6584.1990.tb01987.x
  16. Sirinun, A. and P. A. Williams. 1998. Implications of the xylQ gene of TOL plasmid pWW102 for the evolution of aromatic catabolic pathways. Microbiology 144: 1387-1396 https://doi.org/10.1099/00221287-144-5-1387
  17. Tunner, J. R., C. R. Robertson, S. Schippa, and A. Matin. 1992. Use of glucose starvation to limit growth and induce protein production in Escherichia coli. Biotech. Bioeng. 40: 271-279 https://doi.org/10.1002/bit.260400211