Cell Signaling Mechanisms of Sperm Motility in Aquatic Species

  • Kho, Kang-Hee (Misaki Marine Biological Station, Graduate School of Science, The University of Tokyo) ;
  • Morisawa, Masaaki (Misaki Marine Biological Station, Graduate School of Science, The University of Tokyo) ;
  • Cho, Kap-Seong (Department of Food Science and Technology, Sunchon National University)
  • Published : 2005.06.01

Abstract

Initiation and activation of sperm motility are prerequisite processes for the contact and fusion of male and female gametes at fertilization. The phenomena are under the regulation of cAMP and $Ca^{2+}$ in vertebrates and invertebrates. Mammalian sperm requires $Ca^{2+}$ and cAMP for the activation of sperm motility. Cell signaling for the initiation and activation of sperm motility in the ascidians and salmonid fishes has drawn much attention. In the ascidians, the sperm-activating and attracting factors from unfertilized egg require extracellular $Ca^{2+}$ for activating sperm motility and eliciting chemotactic behavior toward the egg. On the other hand, the cAMP-dependent phosphorylation of protein is essential for the initiation of sperm motility in salmonid fishes. A decrease of the environmental $K^+$ concentration surrounding the spawned sperm causes $K^+$ efflux and $Ca^{2+}$ influx through the specific $K^+$ channel and dihydropyridine-sensitive L-/T-type $Ca^{2+}$ channel, respectively, thereby leading to the membrane hyperpolarization. The membrane hyperpolarization induces synthesis of cAMP, which triggers further cell signaling processes, such as cAMP-dependent protein phosphorylation, to initiate sperm motility in salmonid fishes. This article reviews the studies on the physiological mechanisms of sperm motility and its cell signaling in aquatic species.

Keywords

References

  1. Amanze, D. and A. Iyenger. 1990. The micropyle: A sperm guidance system in teleost fertilization. Development 109: 495-500
  2. Ashizawa, K., H. Tomonaga, and Y. Tsuzuki. 1994. Regulation of flagellar motility of fowl spermatozoa: Evidence for the involvement of intracellular $Ca^{2+}$ and calmodulin. J. Reprod. Fert. 101: 265-272 https://doi.org/10.1530/jrf.0.1010265
  3. Ashizawa, K., G. J. Wishart, H. Tomonaga, K. Nishinakama, and Y. Tsuzuki. 1994. Presence of protein phosphatase type and its involvement in temperature-dependent flagellar movement of fowl spermatozoa. FEBS Lett. 350: 130-134 https://doi.org/10.1016/0014-5793(94)00752-7
  4. Ashizawa, K., G. J. Wishart, and Y. Tsuduki. 1995. Regulatory mechanisms of fowl sperm motility: Possible role of endogenous myosin light chain kinase-like protein. J. Reprod. Fertil. 104: 141-148 https://doi.org/10.1530/jrf.0.1040141
  5. Babcock, D. F., M. M. Bosma, D. E. Battaglia, and A. Darszon. 1992. Early persistent activation of sperm $K^+$ channels by the egg peptide speract. Proc. Natl. Acad. Sci. USA 89: 6001-6005
  6. Babcock, D. F., J. P. Singh, and H. A. Lardy. 1979. Alteration of membrane permeability to calcium ions during maturation of bovine spermatozoa. Dev. Biol. 69: 85-93 https://doi.org/10.1016/0012-1606(79)90276-8
  7. Babcock, D. F., D. M. Stammerjohn, and T. Hutchison. 1978. Calcium redistribution in individual cells correlated with ionophore action on motility. J. Exp. Zool. 204: 391-400 https://doi.org/10.1002/jez.1402040310
  8. Beltran, C., O. Zapata, and A. Darszon. 1996. Membrane potential regulates sea urchin sperm adenylylcyclase. Biochemistry 35: 7591-7598 https://doi.org/10.1021/bi952806v
  9. Billard, R. 1978. Changes in structure and fertilization ability of marine and fresh water fish spermatozoa diluted in media of various salinities. Aquaculture 14: 187-198 https://doi.org/10.1016/0044-8486(78)90094-7
  10. Billard, R., T. Cosson, and L. W. Crim. 1993. Motility and survival of halibut sperm during short term storage. Aqua. Living Resour. 6: 67-75 https://doi.org/10.1051/alr:1993008
  11. Blum, J., G. A. Hayes, J. Jamieson, and T. C. Vanaman. 1980. Calmodulin confers calcium sensitivity on ciliary dynein ATPase. J. Cell Biol. 87: 386-397 https://doi.org/10.1083/jcb.87.2.386
  12. Boitano, S. and C. K. Omoto. 1991. Membrane hyperpolarization activates trout sperm without an increase in intracellular pH. J. Cell Sci. 98: 343-349
  13. Bookbinder, H., G. W. Moy, and V. D. Vacquire. 1990. Purification of sea urchin sperm adenylyl cyclase. J. Cell Biol. 111: 1859-1866 https://doi.org/10.1083/jcb.111.5.1859
  14. Brokaw, C. J. and S. M. Nagayama. 1985. Modulation of the asymmetry of sea urchin sperm flagellar bending by calmodulin. J Cell Biol. 100: 1875-1883 https://doi.org/10.1083/jcb.100.6.1875
  15. Brokaw, C. J. 1991. Calcium sensors in sea urchin sperm flagella. Cell Motil. Cytoskel. 18: 123-130 https://doi.org/10.1002/cm.970180207
  16. Chafouleas, J. G., J. R. Dedman, R. P. Munjal, and A. R. Means. 1979. Calmodulin: Development and application of a sensitive radioimmunoassay. J. Biol. Chem. 254: 10262-10267
  17. Chang, Y. J., Y. H. Choi, H. K. Lim, and K. H. Kho. 1999. Cold storage and cryopreservation of grey mullet, Mugil cephalus, sperm. J. Aquaculture 12: 57-62
  18. Chang, Y. J., H. K. Lim, and K. H. Kho. 1995. Properties of semen and sperm motility in black seabream, Acanthopagrus schlegeli. J. Aquaculture 8: 149-157
  19. Chao, N. H., H. P. Chen, and I. C. Liao. 1975. Study on cryogenic preservation of grey mullet sperm. Aquacultute 5: 389-406 https://doi.org/10.1016/0044-8486(75)90058-7
  20. Cheung, W. Y. 1970. Cyclic 3',5'-nucleotide phosphodiesterase: Demonstration of an activator. Biochem. Biophys. Res. Commun. 90: 1039-1047
  21. Cook, S. P. and D. F. Babcock. 1993. Activation of $Ca^{2+}$ permeability by cAMP is coordinated through the pH increase induced by speract. J. Biol. Chem. 268: 22408-22413
  22. Cook, S. P. and D. F. Babcock. 1993. Selective modulation by cGMP of the $K^+$ channel activated by speract. J. Biol. Chem. 268: 22402-22407
  23. Cosson, M. P., R. Billard, and L. Letellier. 1989. Rise of internal $Ca^{2+}$ accompanies the initiation of trout sperm motility. Cell Motil. Cytoskel. 14: 424-434 https://doi.org/10.1002/cm.970140312
  24. Detweiler, C. and P. Thomas. 1998. Role of ions and ion channels in the regulation of Atlantic croaker sperm motility. J. Exp. Zool. 281: 139-148 https://doi.org/10.1002/(SICI)1097-010X(19980601)281:2<139::AID-JEZ8>3.0.CO;2-P
  25. Epel, D. E., R. W. Wallace, and W. Y. Cheung. 1981. Calmodulin activates NAD kinase of sea urchin eggs: An early event of fertilization. Cell 23: 543-549 https://doi.org/10.1016/0092-8674(81)90150-1
  26. Galindo, B. E., C. Beltran, E. J. Cragoe, and A. Darszon. 2000. Participation of a $K^+$ channel modulated directly by cGMP in the speract-induced signaling cascade of Strongylocentrotus purpuratus sea urchin sperm. Dev. Biol. 221: 285-294 https://doi.org/10.1006/dbio.2000.9678
  27. Gatti, J. L., R. Billard, and R. Christen. 1990. Ionic regulation of the plasma membrane potential of rainbow trout, Salmo gairdneri, spermatozoa: Role in the initiation of sperm motility. J. Cell Physiol. 143: 546-554 https://doi.org/10.1002/jcp.1041430320
  28. Gonzlez-Martnez, M. T., A. Guerrero, E. Morales, L. D. L. Torre, and A. Darszon. 1992. A depolarization can trigger $Ca^{2+}$ uptake and the acrosome reaction when preceded by a hyperpolarization in L. pictus sea urchin sperm. Dev. Biol. 150: 193-202 https://doi.org/10.1016/0012-1606(92)90018-C
  29. Gray, J. 1928. The effect of dilution on the activity of spermatozoa. Br. J. Exp. Biol. 5: 337-344
  30. Griffin, F. J., C. A. Vines, M. C. Pillai, R. Yanagimachi, and C. N. Cherr. 1996. Sperm motility initiation factor is a major component of the Pacific herring egg chorion. Dev. Growth Differ. 38: 193-202
  31. Heffiner, L. J. and B. T. Storey. 1981. The role of calcium in maintaining motility in mouse spermatozoa. J. Exp. Zool. 218: 427-434 https://doi.org/10.1002/jez.1402180314
  32. Inaba, K., O. Kagami, and K. Ogawa. 1999. Tctex2-related outer arm dynein light chain is phosphorylated at activation of sperm motility. Biochem. Biophys. Res. Commun. 256: 177-183 https://doi.org/10.1006/bbrc.1999.0309
  33. Ishiguro, K., H. Murofushi, and H. Sakai. 1982. Evidence that cAMP-dependent protein kinase and a protein factor are involved in reactivation of Triton X-100 models of sea urchin and star-fish spermatozoa. J. Cell Biol. 92: 777-782 https://doi.org/10.1083/jcb.92.3.777
  34. Izumi, H., T. Mrin, K. Inaba, Y. Oka, and M. Morisawa. 1999. Membrane hyperpolarization by sperm activating and attracting factor increases cAMP level and activates sperm motility in the ascidian Ciona intestinalis. Dev. Biol. 213: 246-256 https://doi.org/10.1006/dbio.1999.9367
  35. Johnson, C. H., D. L. Clapper, M. M. Winkler, H. C. Lee, and D. Epel. 1983. A volatile inhibitor immobilizes sea urchin sperm in semen by depressing the intracellular pH. Dev. Biol. 98: 493-501 https://doi.org/10.1016/0012-1606(83)90378-0
  36. Kakiuchi, S. and R. Yamazaki. 1970. Calcium-dependent phosphodiesterase activity and its activating factor (PAF) from brain: Studies on cyclic 3',5'-nucleotide phosphodiesterase. Biochem. Biophys. Res. Commun. 41: 1104-1110 https://doi.org/10.1016/0006-291X(70)90199-3
  37. Kho, K. H., M. Morisawa, and K. S. Choi. 2003. Membrane hyperpolarization increases cAMP to induce the initiation of sperm motility in Salmonid fishes, rainbow trout and masu salmon. J. Microbiol. Biotechnol. 13: 833-840
  38. Kho, K. H., M. Morisawa, and K. S. Choi. 2004. Role of $Ca^{2+}$ and calmodulin on the initiation of sperm motility in salmonid fishes. J. Microbiol. Biotechnol. 14: 456-465
  39. Kho, K. H., T. Satomi, K. Inaba, Y. Oka, and M. Morisawa. 2001. Transmembrane cell signaling for the initiation of trout sperm motility: Roles of ion channels and membrane hyperpolarization for cyclic AMP synthesis. Zool. Sci. 18: 919-928 https://doi.org/10.2108/zsj.18.919
  40. Kho, K. H., Y. J. Chang, and H. K. Lim. 1997. Effect of osmolality and $Ca^{2+}$ on sperm motility in marbled sole, Limanda yokohamae. J. Korean Fish. Soc. 30: 809-815
  41. Krasznai, Z., T. Marian, H. Izumi, S. Damjanovich, L. Balkay, L. Tron, and M. Morisawa. 2000. Membrane hyperpolarization removes inactivation of $Ca^{2+}$ channels, leading to $Ca^{2+}$ influx and subsequent initiation of sperm motility in the common carp. Proc. Natl. Acad. Sci. USA 97: 2052-2057
  42. Lindermann, C. B. 1978. A cAMP-induced increase in the motility of demembranated bull sperm models. Cell 13: 918
  43. Mazia, D., C. Petzelt, R. O. Williams, and I. Meza. 1972. A Ca-activated ATPase in the mitotic apparatus of the sea urchin egg (isolated by a new method). Exp. Cell Res. 70: 325-332 https://doi.org/10.1016/0014-4827(72)90143-7
  44. Means, A. R., J. S. Tash, and V. Guerriero. 1982. Regulation of the cytoskelton by $Ca^{2+}$-calmodulin and cAMP. Ann. NY. Acad. Sci. 383: 69-84 https://doi.org/10.1111/j.1749-6632.1982.tb23162.x
  45. Morisawa, M. and H. Hayashi. 1985. Phosphorylation of a 15 K axonemal protein is the trigger initiating trout sperm motility. Biomed. Res. 6: 181-184 https://doi.org/10.2220/biomedres.6.181
  46. Morisawa, M. and K. Ishida. 1987. Short-term changes in levels of cyclic AMP, adenylate cyclase, and phosphodiesterase during the initiation of sperm motility in rainbow trout. J. Exp. Zool. 242: 199-204 https://doi.org/10.1002/jez.1402420211
  47. Morisawa, M. and M. Okuno. 1982. Cyclic AMP induces maturation of trout sperm axoneme to initiate motility. Nature 295: 703-704 https://doi.org/10.1038/295703a0
  48. Morisawa, M., M. Okuno, K. Suzuki, S. Morisawa, and K. Ishida. 1983. Initiation of sperm motility in telosts. J. Submicrosc. Cytol. 15: 61-65
  49. Morisawa, M. and K. Suzuki. 1980. Osmolarity and potassium ion: Their roles in initiation of sperm motility in teleosts. Science 210: 1145-1147 https://doi.org/10.1126/science.7444445
  50. Morisawa, M., S. Tanimoto, and H. Ohtake. 1992. Characterization and partial purification of sperm-activating substance from eggs of the herring, Clupea plasii. J. Exp. Zool. 264: 225-230 https://doi.org/10.1002/jez.1402640216
  51. Morton, B. E., R. Sagadrac, and C. Fraser. 1978. Sperm motility within the mammalian epididymis: Species variation and correlation with free calcium levels in epididymal plasma. Fertil. Steril. 29: 695-698 https://doi.org/10.1016/S0015-0282(16)43348-0
  52. Morton, B., J. Hrrigan-Lum, L. Albabli, and T. Jooss. 1974. The activation of motility in quiescent hamster sperm from the epididymis by calcium and cyclic nucleotides. Biochem. Biophys. Res. Commun. 56: 372-379 https://doi.org/10.1016/0006-291X(74)90852-3
  53. Nishioka, D. and N. Cross. 1978. The role of external sodium in sea urchin fertilization, pp. 403-413. In Dirksen, E. R., Prescott, D. M. and Fox, C. F. (eds.), Cell Reproduction. Academic Press
  54. Nomura, M., K. Inaba, and M. Morisawa. 2000. Cyclic AMP- and calmodulin-dependent phosphorylation of 21 and 26 kDa proteins in axoneme is a prerequisite for SAAF-induced motile activation in ascidian spermatozoa. Dev. Growth Differ. 42: 129-138 https://doi.org/10.1046/j.1440-169x.2000.00489.x
  55. Oda, S., Y. Igarashi, K. Manaka, N. Koibuchi, M. SakaiSawada, K. Sakai, M. Morisawa, H. Ohtake, and N. Shimizu. 1998. Sperm-activating proteins obtained from the herring egg are homologous to trypsin inhibitors and synthesized in follicle cells. Dev. Biol. 204: 55-63 https://doi.org/10.1006/dbio.1998.9056
  56. Oda, S., Y. Igarashi, H. Ohtake, K. Sakai, N. Shimizu, and M. Morisawa. 1995. Sperm-activating proteins from unfertilized eggs of the Pacific herring, Clupia pallasii. Dev. Growth Differ. 37: 257-261 https://doi.org/10.1046/j.1440-169X.1995.t01-2-00003.x
  57. Okamura, N., Y. Tajima, A. Soejima, H. Masuda, and Y. Sugita. 1985. Sodium bicarbonate in seminal plasma stimulates the motility of mammalian spermatozoa through direct activation of adenylyl cyclase. J. Biol. Chem. 260: 9699-9705
  58. Pillai, M. C., T. S. Shields, R. Yanagimachi, and G. N. B. Cherr. 1993. Isolation and partial characterization of the sperm motility initiation factor from eggs of the Pacific herring, Clupea pallasi. J. Exp. Zool. 265: 336-342 https://doi.org/10.1002/jez.1402650316
  59. Pires, E. M. V. and S. V. Perry. 1977. Purification and properties of myosin light chain kinase from fast skeletal muscle. J Biol. Chem. 167: 137-146
  60. Rothchild, L. 1948. The physiology of sea-urchin spermatozoa: Senescence and the dilution effect. J. Exp. Biol. 25: 353-368
  61. Si, Y. and M. Okuno. 1995. Activation of mammalian sperm motility by regulation of microtuble sliding via cyclic adenosine 5'-monophosphate-dependent phosphorylation. Biol. Repr. 53: 1081-1087 https://doi.org/10.1095/biolreprod53.5.1081
  62. Si, Y. and M. Okuno. 1995. Extrusion of microtubule doublet outer dense fiber 5-6 associating with fibrous sheath sliding in mouse sperm flagella. J. Exp. Zool. 273: 355-362 https://doi.org/10.1002/jez.1402730409
  63. Si, Y. and M. Okuno. 1993. Multiple activation of mouse sperm motility. Mol. Reprod. Dev. 36: 89-95 https://doi.org/10.1002/mrd.1080360113
  64. Si, Y. and M. Okuno. 1999. Regulation of microtubule sliding by a 36-kDa phosphoprotein in hamster sperm flagella. Mol. Reprod. Dev. 52: 328-334 https://doi.org/10.1002/(SICI)1098-2795(199903)52:3<328::AID-MRD11>3.0.CO;2-N
  65. Si, Y. and M. Okuno. 1999. Role of tyrosine phosphorylation of flagellar proteins in hamster sperm hyperactivation. Biol. Reprod. 61: 240-246 https://doi.org/10.1095/biolreprod61.1.240
  66. Storey, B. T. 1975. Energy metabolism of spermatozoa: Effect of calcium ion on respiration of mature epididymal sperm of rabbit. Biol. Reprod. 13: 1-9 https://doi.org/10.1095/biolreprod13.1.1
  67. Strussmann, C. A., P, Renard, H. Ling, and F. Takashima. 1994. Motility of pejjerey Odontesthes bonariensis spermatozoa. Fish Sci. 60: 9-13 https://doi.org/10.2331/fishsci.60.9
  68. Tajima, Y., N. Okamura, and Y. Sugita. 1987. The activation effects of bicarbonate on sperm motility and respiration at ejaculation. Biochim. Biophys. Acta 924: 519-529 https://doi.org/10.1016/0304-4165(87)90168-1
  69. Takai, H. and M. Morisawa. 1995. Changes in intracellular $K^+$ concentration caused by external osmolality change regulate sperm motility of marine and freshwater teleosts. J. Cell Sci. 108: 1175-1181
  70. Tanimoto, S., Y. Kudo, T. Nakazawa, and M. Morisawa. 1994. Implication that potassium flux and increase in intracellular calcium are necessary for the initiation of sperm motility in salmonid fishes. Mol. Reprod. Dev. 39: 409-414 https://doi.org/10.1002/mrd.1080390409
  71. Tanimoto, S. and M. Morisawa. 1988. Roles of potassium and calcium channels in the initiation of sperm motility in rainbow trout. Dev. Growth Diff. 30: 117-124 https://doi.org/10.1111/j.1440-169X.1988.00117.x
  72. Tash, J. S., S. S. Kakar, and A. R. Means. 1984. Flagellar motility requires the cAMP-dependent phosphorylation of a heat-stable NP-40-soluble 56 kDa protein, axokinin. Cell 38: 551-559 https://doi.org/10.1016/0092-8674(84)90509-9
  73. Tash, J. S. and A. R. Means. 1983. Cyclic adenosine 3,5 monophosphate, calcium and protein phosphorylation in flagellar motility. Biol. Reprod. 28: 75-104 https://doi.org/10.1095/biolreprod28.1.75
  74. Tombes, R. M. and B. M. Shapiro. 1985. Metabolite channeling: A phosphocreatine shuttle to mediate high energy phosphate transport between sperm mitochondria. Cell 4: 325-334
  75. Yanagimachi, R., G. N. Cherr, M. C. Pillai, and J. D. Baldwin. 1992. Factors controlling sperm entry into the micropyles of salmonid and herring eggs. Dev. Growth Differ. 34: 447-461 https://doi.org/10.1111/j.1440-169X.1992.00447.x
  76. Yoshida, K. 1998. The study on the mechanism of sperm activation by sperm-activation proteins in the Pacific herring, Clupea pallasii. Ph. D. Thesis, University of Tokyo, Tokyo
  77. Yoshida, T. and M. Nomura. 1972. A substance enhancing sperm motility in the ovarian fluid of rainbow trout. Bull. Japan Soc. Sci. Fish 38: 1073-1079 https://doi.org/10.2331/suisan.38.1073