Structure Prediction of the Peptide Synthesized with the Nonribosomal Peptide Synthetase Gene from Bradyrhizobium japonicum

  • JUNG BO-RA (Bio/Molecular Informatics Center, Department of Molecular Biotechnology, Konkuk University) ;
  • LEE YUKYUNG (Bio/Molecular Informatics Center, Department of Molecular Biotechnology, Konkuk University) ;
  • LIM YOONGHO (Bio/Molecular Informatics Center, Department of Molecular Biotechnology, Konkuk University) ;
  • AHN JOONG-HOON (Bio/Molecular Informatics Center, Department of Molecular Biotechnology, Konkuk University)
  • Published : 2005.06.01

Abstract

Small peptides synthesized by nonribosomal peptide synthetases (NRPSs) genes are found in bacteria and fungi. While some microbial taxa have few, others make a large number and variety. However, biochemical characterization of the products synthesized by NPRS demands a great deal of efforts. Since the completion of genome projects of numerous microorganisms, the numbers of available NRPSs genes are being expanded. Prediction of the peptides encoded by NRPS could save time and efforts. We chose the NRPS gene from Bradyrhizobium japonicum as a model to predict the peptide structure encoded by NRPS genes. Using computational analyses, the domain structure of this gene was defined, and the structure of a peptide synthesized by this NRPS was deduced. It was found that it encoded a tripeptide consisting of proline-serine-phenylalanine. This method would be helpful to predict the structure of small peptides with various NPRS genes from the genome sequence.

Keywords

References

  1. Becker, J. E., R. E. Moore, and B. S. Moore. 2004. Cloning, sequencing, and biochemical characterization of the nostocyclopeptide biosynthetic gene cluster: Molecular basis for imine macrocyclization. Gene 325: 35-42 https://doi.org/10.1016/j.gene.2003.09.034
  2. Challis, G. L., J. Ravel, and C. A. Townsend. 2000. Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem. Biol. 7: 211-224 https://doi.org/10.1016/S1074-5521(00)00091-0
  3. Challis, G. L. and J. Ravel. 2000. Coelichin, a new peptide siderophore encoded by the Streptomyces coelicolor genome: Structure prediction from the sequence of its non-risobosomal peptide synthetase. FEMS Microb. Lett. 187: 111-114 https://doi.org/10.1111/j.1574-6968.2000.tb09145.x
  4. Conti, E., T. Stachelhaus, M. A. Marahiel, and P. Brick. 1997. Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. EMBO J. 16: 4174-4183 https://doi.org/10.1093/emboj/16.14.4174
  5. Guenzi, E., G. Galli, I. Grgurina, D. C. Gross, and G. Grandi. 1998. Characterization of the syringomycin synthetase gene cluster. A link between prokaryotic and eukaryotic peptide synthetases. J. Biol. Chem. 273: 32857-32863 https://doi.org/10.1074/jbc.273.49.32857
  6. Hori, K., Y. Yamamoto, T. Minetoki, T. Kurotsu, M. Kanda, S. Miura, K. Okamura, J. Furuyama, and Y. Saito. 1989. Molecular cloning and nucleotide sequence of the gramicidin S synthetase 1 gene. J. Biochem. Tokyo 106: 639-645 https://doi.org/10.1093/oxfordjournals.jbchem.a122909
  7. Kim, K.-R., I. H. Lee, and J.-W. Suh. 2001. A putative peptide synthetase from Bacillus subtilis 713 recognizing L-Iysine, L-tryptophan, and L-glutaminc acid. J. Microbiol. Biotechnol. 11: 798-803
  8. Konz, D. and M. A. Marahiel. 1999. How do peptide synthetases generate structural diversity? Chem. Biol. 6: R39-R48 https://doi.org/10.1016/S1074-5521(99)80002-7
  9. Kratzschmar, J., M. Krause, and M. A. Marahiel. 1989. Gramicidin S biosynthesis operon containing the structural genes grsA and grsB has an open reading frame encoding a protein homologous to fatty acid thioesterases. J. Bacteriol. 171: 5422-5429 https://doi.org/10.1128/jb.171.10.5422-5429.1989
  10. Marahiel, M. A., T. Stachelhaus, and H. D. Mootz. 1997. Modular peptide synthetase involved in nonribosomal peptide synthesis. Chem. Rev. 97: 2651-2673 https://doi.org/10.1021/cr960029e
  11. McMorran, B. J., M.E. Merriman, I. T. Rombel, and I. L. Lamont. 1996. Characterisation of the pvdE gene which is required for pyoverdine synthesis in Pseudomonas aeruginosa. Gene 176: 55-59 https://doi.org/10.1016/0378-1119(96)00209-0
  12. Schlumbohm, W., T. Stein, C. Ullrich, J. Vater, M. Krause, M. A. Marahiel, V. Kruft, and B. Wittmann-Liebold. 1991. An active serine is involved in covalent substrate amino acid binding at each reaction center of gramicidin S synthetase. J. Biol. Chem. 266: 23135-23141
  13. Shen, B., D. L. Sancherz, C. Edwards, D. J. Chen, and M. J. M. Murrell. 2002. Cloning and characterization of the bleomycin biosynthetic gene cluster from Streptomyces verticillus ATCC 15003. J. Nat. Prod. 65: 422-431 https://doi.org/10.1021/np010550q
  14. Stachelhaus, T., H. D. Mootz, and M. A. Marahiel. 1999. The specificity-conferring code of adenylation domains in nonribosomal peptide synthetase. Chem. Biol. 6: 493-505 https://doi.org/10.1016/S1074-5521(99)80082-9
  15. Tognoni, A., E. Franchi, C. Magistrelli, E. Colombo, P. Cosmina, and G. Grandi. 1995. A putative new peptide synthase operon in Bacillus subtilis: Partial characterization. Microbiology 141: 645-648 https://doi.org/10.1099/13500872-141-3-645
  16. Turgay, K., M. Krause, and M. A. Marahiel. 1992. Four homologous domains in the primary structure of GrsB are related to domains in a superfamily of adenylate-forming enzymes. Mol. Microbiol. 6: 529-546 https://doi.org/10.1111/j.1365-2958.1992.tb01498.x
  17. Walton, J. D., D. G. Panaccione, and H. E. Hallen. 2004. Peptide synthesis without ribosomes, pp. 127-162. In J. Tkacz and L. Lange (eds.), Advances in Fungal Biotechnology for Industry, Agriculture, and Medicine. Kluwer Academic Publishers, New York, U.S.A