Miniscale Identification and Characterization of Subtilisins from Bacillus sp. Strains

  • CHOI NACK-SHICK (Proteome Research Laboratory, Korea Research Institute of Bioscience and Biotechnology) ;
  • JU SUNG-KYU (Department of Biology, Chungnam National University) ;
  • LEE TAE YOUNG (Proteome Research Laboratory, Korea Research Institute of Bioscience and Biotechnology) ;
  • YOON KAB-SEOG (Proteome Research Laboratory, Korea Research Institute of Bioscience and Biotechnology) ;
  • CHANG KYU-TAE (Primate Research Laboratory, Korea Research Institute of Bioscience and Biotechnology) ;
  • MAENG PIL JAE (Microbiology, Chungnam National University) ;
  • KIM SEUNG-HO (Proteome Research Laboratory, Korea Research Institute of Bioscience and Biotechnology)
  • Published : 2005.06.01

Abstract

Subtilisin (EC 3.4.21.14) is the major extracellular alkaline serine protease of Bacillus species. Previously, we found that subtilisins did not migrate in the electrophoretic field in the Laemmili buffer system due to their high pI values (over 8.8); however, it formed a 'binding mode' at the top of the separating gel [5]. Utilizing this characteristic, four subtilisins from Bacillus sp. strains (e.g., B. subtilis 168, B. subtilis KCTC 1021, B. amyloliquefaciens KCTC 3002, and Bacillus sp. DJ-1 and DJ-4) were easily and quickly identified by an over-running electrophoretic technique with a miniscale culture supernatant (less than 20 ml) without any column chromatographic steps. Two subtilisins (DJ-l and a recombinant version) from Bacillus sp. DJ-l were characterized, and the enzymatic properties were determined by SDS-fibrin zymography and densitometric analysis. Based on this observation, the recombinant pro-subtilisin DJ-l showed the same 'binding mode,' similar to native subtilisin DJ-l. On the other hand, mature subtilisin DJ -1 without pro-peptide showed no enzymatic activity.

Keywords

References

  1. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  2. Brown, T. L., M. G. Yet, and F. Wold. 1982. Substrate-containing gel electrophoresis: Sensitive detection of amylolytic, nucleolytic, and proteolytic enzymes. Anal. Biochem. 122: 164-172 https://doi.org/10.1016/0003-2697(82)90266-4
  3. Chang, C. T., M. H. Fan, F. C. Kuo, and H. Y. Sung. 2000. Potent fibrinolytic enzyme from a mutant of Bacillus subtilis IMR-NK1. J Agric. Food Chem. 48: 3210-3216 https://doi.org/10.1021/jf000020k
  4. Choi, N. S., J. Y. Lee, K. S. Yoon, K. Y. Han, and S. H. Kim. 2001. Identification of total extracellular fibrinase from Bacillus sp. DJ using one- or two-dimensional fibrin zymography for proteomic approach. J. Microbiol. Biotechnol. 11: 1111-1114
  5. Choi, N. S., K. H. Yoo, K. S. Yoon, K. T. Chang, P. J. Maeng, and S. H. Kim. 2004. Identification of recombinant subtilisins. J. Microbiol. Biotechnol. 15: 35-39
  6. Choi, N. S., K. T. Chang, P. J. Maeng, and S. H. Kim. 2004. Cloning, expression, and fibrin (ogen)olytic properties of a subtilisin DJ-4 gene. from Bacillus sp. DJ-4. FEMS Microbiol. Lett. 236: 325-331 https://doi.org/10.1111/j.1574-6968.2004.tb09665.x
  7. Choi, N. S. and S. H. Kim. 2000. Two fibrin zymography methods for analysis of plasminogen activators on gels. Anal. Biochem. 281: 236-238 https://doi.org/10.1006/abio.2000.4572
  8. Deutscher, M. P. 1990. Guide to Protein Purification. Academic Press, San Diego
  9. Fujita, M., K. Nomura, K. Hong, Y Ito, A. Asada, and S. Nishimuro. 1993. Purification and characterization of a string fibrinolytic enzyme (nattokinase) in the vegetable cheese natto, a popular soybean fermented food in Japan. Biochem. Biophys. Res. Commun. 197: 13470-13472
  10. Gharahdaghi, F., M. Kirchner, J. Fernandez, and S. M. Mische. 1996. Peptide-mass profiles of polyvinylidene difluoride-bound proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in the presence of nonionic detergents. Anal. Biochem. 233: 94-99 https://doi.org/10.1006/abio.1996.0012
  11. Gharahdaghi, F., C. R. Weinberg, D. A. Meagher, B. S. Imai, and S. M. Mische. 1999. Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: A method for the removal of silver ions to enhance sensitivity. Electrophoresis 20: 601-605 https://doi.org/10.1002/(SICI)1522-2683(19990301)20:3<601::AID-ELPS601>3.0.CO;2-6
  12. Ikemura, H. and M. Inouye. 1988. In vitro processing of prosubtilisin produced in Escherichia coli. J. Biol. Chem. 263: 12959-12963
  13. Jang, J. S., D. O. Kang, M. J. Chun, and S. M. Byun. 1992. Molecular cloning of a subtilisin J. gene from Bacillus stearothermophilus and its expression in Bacillus subtilis. Biochem. Biophys. Res. Commun. 184: 277-282 https://doi.org/10.1016/0006-291X(92)91189-W
  14. Kamal, M., J. Hoog, R. Kaiser, J. Shafqat, T. Razzaki, Z. H. Zaidi, and H. Jornvall. 1995. Isolation, characterization and structure of subtilisin from thermostable Bacillus subtilis isolate. FEBS Lett. 374: 363-366 https://doi.org/10.1016/0014-5793(95)01145-5
  15. Kaneko, R., N. Koyama, Y. C. Tsai, R. Y Juang, K. Yoda, and M. Yamasaki. 1989. Molecular cloning of the structural gene for alkaline elastase YaB, a new subtilisin produced by an alkalophilic Bacillus strain. J. Bacteriol. 171: 5232-5236 https://doi.org/10.1128/jb.171.9.5232-5236.1989
  16. Kim, J. S., I. S. Lee, S. Lee, Y. P. Lee, C. Jung, H. C. Kim, and S. Y. Choi. 2002. Cloning and expression of the aminopeptidase gene from the Bacillus licheniformis in Bacillus subtilis. J. Microbiol. Biotechnol. 12: 773-779
  17. Kim, S. H., N. S. Choi, and W. Y. Lee. 1998. Fibrin zymography: A direct analysis of fibrinolytic enzymes on gels. Anal. Biochem. 263: 115-116 https://doi.org/10.1006/abio.1998.2816
  18. Kim, S. H. and N. S. Choi. 1999. Electrophoretic analysis of protease inhibitors in fibrin zymography. Anal. Biochem. 270: 179-181 https://doi.org/10.1006/abio.1999.4080
  19. Kim, S. H. and N. S. Choi. 2000. Purification and characterization of subtilisin DJ-4 secreted by Bacillus sp. strain DJ-4 screened from Doen-Jang. Biosci. Biotechnol. Biochem. 64: 722-1725
  20. Kim, W., K. Choi, Y. Kim, H. Park, J. Choi, Y. Lee, H. Oh, I. K won, and S. Lee. 1996. Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11-4 screened from Chungkook-Jang. Appl. Environ. Microbiol. 62: 2482-2488
  21. Ko, J. H., J. P. Peng, J. Zhu, and Y. P. Qi. 2004. Identification of two novel fibrinolytic enzymes from Bacillus subtilis QK02. Comp. Biochem. Physiol. C 137: 65-74 https://doi.org/10.1016/j.cbpc.2003.10.004
  22. Kurihara, M., F. S. Markland, and E. L. Smith. 1972. Subtilisin Amylosacchariticus. 3. Isolation and sequence of the chymotryptic peptides and the complete amino acid sequence. J. Biol. Chem. 247: 5619-5631
  23. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  24. Lantz, M. S. and P. Ciborowski. 1994. Zymographic techniques for detection and characterization of microbial proteases. Methods Enzymol. 235: 563-594 https://doi.org/10.1016/0076-6879(94)35171-6
  25. Matsubara, H., C. B. Kasper, D. M. Brown, and E. L. Smith. 1965. Subtilisin BPN. I. Physical properties and amino acid composition. J. Biol. Chem. 240: 1125-1130
  26. Nakamura, T., Y. Yamagata, and E.lchishima. 1992. Nucleotide sequence of the subtilisin NAT gene, aprN, of Bacillus subtilis (natto). Biosci. Biotechnol. Biochem. 56: 1869-1871 https://doi.org/10.1271/bbb.56.1869
  27. Peng, Y., Q. Huang, R. Zhang, and Y. Zhang. 2003. Purification and characterization of a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4 screened from douchi, a traditional Chinese soybean food. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 134: 45-52 https://doi.org/10.1016/S1096-4959(02)00183-5
  28. Priest, F. G. 1977. Extracellular enzyme synthesis in the genus Bacillus. Bacteriol. Rev. 41: 711-753
  29. Rochelle, P. A., J. C. Fry, R. J. Parkes, and A. J. Weightman. 1992. DNA extraction for 16S rRNA gene analysis to determine genetic diversity in deep sediment communities. FEMS Microbiol. Lett. 100: 59-66 https://doi.org/10.1111/j.1574-6968.1992.tb05682.x
  30. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual. CSH, New York, U.S.A
  31. Simonen, M. and J. Palva. 1993. Protein secretion in Bacillus species. Microbiol. Rev. 57: 109-137
  32. Smith, E. L., R. J. Delange, W. H. Evans, M. Landon, and F. S. Markland. 1968. Subtilisin Carlsberg. V. The complete sequence; comparison with subtilisin BPN'; evolutionary relationships. J. Biol. Chem. 243: 2184-2191
  33. Takagi, H., M. Yamamoto, I. Ohtsu, and S. Nakamori. 1998. Random mutagenesis into the conserved Gly 154 of subtilisin E: Isolation and characterization of the revertant enzymes. Protein Eng. 11: 1205-1210 https://doi.org/10.1093/protein/11.12.1205
  34. Wells, J. A. and D. A. Estell. 1988. Subtilisin - an enzyme designed to be engineered. Trends Biochem. Sci. 13: 291-297 https://doi.org/10.1016/0968-0004(88)90121-1
  35. Wong, S. L., C. W. Price, D. S. Goldfarb, and R. H. Doi. 1984. The subtilisin E gene of Bacillus subtilis is transcribed from a sigma 37 promoter in vivo. Proc. Natl. Acad. Sci. USA 81: 1184-1188
  36. Yamazaki, H., K. Ohmura, A. Nakayama, Y. Takeichi, K. Otozai, M. Yamasaki, G. Tamura, and K. Yamane. 1983. Alpha-amylase genes (amyR2 and $amyE^+$) from an alpha-amylase-hyperproducing Bacillus subtilis strain: Molecular cloning and nucleotide sequences. J. Bacteriol. 156: 327-337
  37. Zhu, X. L., Y. Ohta, F. Jordan, and E. Inouye. 1989. Prosequence of subtilisin can guide the refolding of denatured subtilisin in an intermolecular process. Nature 339: 483-484 https://doi.org/10.1038/339483a0