DNA Repair Activity of Human rpS3 is Operative to Genotoxic Damage in Bacteria

  • JANG CHANG-YOUNG (Laboratory of Biochemistry, School of Life Sciences & Biotechnology, and Bioinstitute, Korea University) ;
  • LEE JAE YUNG (Department of Biology, Mokpo National University) ;
  • KIM JOON (Laboratory of Biochemistry, School of Life Sciences & Biotechnology, and Bioinstitute, Korea University)
  • Published : 2005.06.01

Abstract

Human ribosomal protein S3 (rpS3), which has a DNA repair endonuclease activity, is a multifunctional protein. This protein is involved in DNA repair, translation, and apoptosis. In particular, rpS3 has a lyase activity, which cleaves the phosphodiester bond of damaged sites such as cyclobutane pyrimidine dimers and AP sites. Here, using deletion analysis, we identified that the repair endonuclease domain resides in the C-terminal region (165-243 aa) of rpS3. We also found that ectopic expression of GST-rpS3 in bacterial strain BL21 promoted the resistance of these cells to ultraviolet (UV) radiation and hydrogen peroxide ($H_{2}O_{2}$) treatment. The repair domain of rpS3 was sufficient to exhibit the resistance to UV irradiation and recover cell growth and viability, showing that the repair activity of rpS3 is responsible for the resistance to UV irradiation. Our study suggests that rpS3 is able to process DNA damage in bacteria via its repair domain, showing the resistance to genotoxic stress. This implies that rpS3-like activity could be operative in bacteria.

Keywords

References

  1. Atri, N. and L. C. Rai. 2003. Differential responses of three cyanobacteria to UV-B and Cd. J. Microbiol. Biotechnol. 13: 538-544
  2. Baik, S. H., P. K. Cho, M. H. Kim, and S. E. Yun. 2003. Enhanced production of benzoylformate reductase in Enterococcus faecalis under oxidative stress established by natural electron carriers. J. Microbiol. Biotechnol. 13: 100-104
  3. Bommer, U. A., G. Lutsch, J. Stahl, and R. Bielka. 1991. Eukaryotic initiation factors eIF-2 and eIF-3: Interactions, structure and localization in ribosomal initiation complexes. Biochimie (Paris) 73: 1007-1019 https://doi.org/10.1016/0300-9084(91)90142-N
  4. Chen, D. S., C. Law, and P. Keng. 1993. Reduction of radiation cytotoxicity by human apurinic endonuclease in a radiation-sensitive Escherichia coli mutant. Radiat. Res. 135: 405-410 https://doi.org/10.2307/3578882
  5. Christmann, M., M. T. Tomicic, W. P. Roos, and B. Kaina. 2003. Mechanisms of human DNA repair: An update. Toxicology 193: 3-34 https://doi.org/10.1016/S0300-483X(03)00287-7
  6. Deutsch, W. A., A. Yacoub, P. Jaruga, T. H. Zastawny, and M. Dizdaroglu. 1997. Characterization and mechanism of action of Drosophila ribosomal protein S3 DNA glycosylase activity for the removal of oxidative damaged DNA bases. J. BioI. Chem. 272: 32857-32860 https://doi.org/10.1074/jbc.272.52.32857
  7. Esther, E. A. V., M. van Kesteren, J. J. Turner, G. A. van der Marel, J. H. van Boom, G. F. Moolenaar, and N. Goosen. 2002. The C-terminal region of Escherichia coli UvrC contributes to the flexibility of the UvrABC nucleotide excision repair system. Nucleic Acids Res. 30: 2492-2500 https://doi.org/10.1093/nar/30.11.2492
  8. Friedberg, E. C. 2001. How nucleotide excision repair protects against cancer. Nat. Rev. Cancer 1: 22-33 https://doi.org/10.1038/35094000
  9. Friedberg, E. C. 2003. DNA damage and repair. Nature 42: 436-440 https://doi.org/10.1364/AO.42.000436
  10. Gu, L., S. M. Huang, and M. Sander. 1993. Drosophila Rrp1 complements E. coli xth nfo mutants: Protection against both oxidative and alkylation-induced DNA damage. Nucleic Acids Res. 21: 4788-4793 https://doi.org/10.1093/nar/21.20.4788
  11. Hegde, V., M. R. Kelley, Y. Xu, I. S. Mian, and W. A. Deutsch. 2001. Conversion of the bifunctional 8-oxoguanine/${\beta}-{\delta}$ apurinic/apyrimidinic DNA repair activities of Drosophila ribosomal protein S3 into the human S3 monofunctional ${\beta}$-elimination catalyst through a single amino acid change. J. BioI. Chem. 276: 27591-27596 https://doi.org/10.1074/jbc.M101213200
  12. Hegde, V., M. R. Kelley, Y. Xu, I. S. Mian, and W. A. Deutsch. 2001. Conversion of the bifunctional 8-oxoguanine/beta-delta apurinic/apyrimidinic DNA repair activities of Drosophila ribosomal protein S3 into the human S3 monofunctional beta-elimination catalyst through a single amino acid change. J. Biol.Chem. 276: 27591-27596 https://doi.org/10.1074/jbc.M101213200
  13. Jang, C.-Y., J. Y. Lee, and J. Kim. 2004. RpS3, a DNA repair endonuclease and ribosomal protein, is involved in apoptosis. FEBS Lett. 561: 81-85
  14. Jeon, K. S., E. J. Geun, and I. K. Hwang, 2002. Assay of ${\beta}$-glucosidase activity of bifidobacteria and the hydrolysis of isoflavone glycosides by Bifidobacterium sp. Int-57 in soymilk fermentation. J. Microbiol. Biotechnol. 12: 8-13
  15. Joo, Y.-J., H.-J. Kim, J. Y. Lee, and J. Kim. 2004. Biochemical quantitation of PM2 page DNA as a substrate for endonuclease assay. J. Microbiol. 42: 99-102
  16. Jung, S. O., C. K. Auh, J. C. Ryu, and J. Kim. 2002. A new method for substrate preparation of PM2 phage DNA for endonuclease assay. Antonie van Leeuwenhoek 83: 223-229
  17. Kastan, M. B., O. Onyekwere, D. B. V. Sidransky, and R. W. Craig. 1991. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 51: 6304-6311
  18. Kim, J. and S. Linn, 1989. Purification and characterization of UY endonucleases from murine plasmacytoma cells. J. BioI. Chem. 264: 2739-2745
  19. Kim, J., L. S. Chubatsu, A. Admon, J. Stahl, R. Fellous, and S. Linn. 1995. Implication of mammalian ribosomal protein S3 in the processing of DNA damage. J. BioI. Chem. 270: 13620-13629 https://doi.org/10.1074/jbc.270.23.13620
  20. Kim, S. H., J. T. Lee, and J. Kim. 2005. Characterization of a wide range base-damage endonuclease activity of mammalian rpS3. Biochem. Biophys. Res. Commun. 328: 962-967 https://doi.org/10.1016/j.bbrc.2005.01.045
  21. Kuo, C. F., D. E. McRee, C. L. Fisher, S. F. O'Handley, R. P. Cunningham, and J. A. Tainer. 1992. Atomic structure of the DNA repair [4Fe-4S] enzyme endonuclease III. Science 258: 434-440 https://doi.org/10.1126/science.1411536
  22. Kuznetsov, S. V., O. M. Sidorkina, J. Laval, and A. Ansari. 2001. Characterization of thermal stability of the Escherichia coli FapyDNA glycosylase. Biochem. Biophys. Res. Commun. 288: 121-128 https://doi.org/10.1006/bbrc.2001.5732
  23. Lim, Y., S. M. Lee, J. Y. Lee, E. P. Moon, B. J. Lee, and J. Kim. 2002. Complete genomic structure of human rpS3: Identification of functional U 15b snoRNA in the fifth intron. Gene 286: 291-297 https://doi.org/10.1016/S0378-1119(02)00502-4
  24. Min, J. and M. B. Gu. 2003. Genotoxicity assay using chromosomally-integrated bacterial recA::Lux. J. Microbiol. Biotechnol. 13: 91-99
  25. Naora, H. and H. Naora. 1999. Involvement of ribosomal proteins in regulating cell growth and apoptosis: Translational modulation or recruitment for extraribosomal activity? lmmunol. Cell BioI. 77: 197-205
  26. Naora, H.,l. Takai, M. Adachi, and H. Naora. 1998. Altered cellular responses by varying expression of a ribosomal protein gene: Sequential coordination of enhancement and suppression of ribosomal protein S3a gene expression induces apoptosis. J. Cell Biol. 141: 741-753 https://doi.org/10.1083/jcb.141.3.741
  27. Neumann, F. and U. Krawinkel. 1997. Constitutive expression of human ribosomal protein L7 arrests the cell cycle in G1 and induces apoptosis in Jurkat T-Iymphoma cells. Exp. Cell Res. 230: 252-261 https://doi.org/10.1006/excr.1996.3417
  28. Sandigursky, M., A. Yacoub, M. R. Kelley, W. A. Deutsch, and W. A. Franklin. 1997. The Drosophila ribosomal protein S3 contains a DNA deoxyribophosphodiesterase (dRpase) activity. J. Biol. Chem. 272: 17480-17484 https://doi.org/10.1074/jbc.272.28.17480
  29. Scharer, O. D. and J. Jiricny. 2001. Recent progress in the biology, chemistry and structural biology of DNA glycosylases. Bioessays 23: 270-281 https://doi.org/10.1002/1521-1878(200103)23:3<270::AID-BIES1037>3.0.CO;2-J
  30. Slupphaug, G., B. Kavli, and H. E. Krokan. 2003. The interacting pathways for prevention and repair of oxidative DNA damage. Mutat. Res. 531: 231-251 https://doi.org/10.1016/j.mrfmmm.2003.06.002
  31. Thayer, M. M., H. Ahern, D. Xing, R. P. Cunningham, and J. A. Tainer. 1995. Novel DNA binding motifs in the DNA repair enzyme endonuclease III crystal structure. EMBO J. 14: 4108-4120
  32. Tudek, B. 2003. Oxidative DNA damage and its repair; Base excision repair. Mutat. Res. 531: 1-3 https://doi.org/10.1016/j.mrfmmm.2003.09.011
  33. Van Lijesbettens, M., R. Vanderhaeghen, M. De Block, G. Bauw, R. Villarroel, and M. Van Montagu. 1994. An S18 ribosomal protein gene copy at the Arabidopsis PFL locus affects plant development by its specific expression in meristems. EMBO J. 13: 3378-3388
  34. Wilson, D. M., W. A. Deutsch, and M. R. Kelley. 1994. Drosophila ribosomal protein S3 contains an activity that cleaves DNA at apurinic/apyrimidinic sites. J. Biol. Chem. 269:25359-25364
  35. Yacoub, A., L. Augeri, M. R. Kelley, P. W. Doetsch, and W. A. Deutsch. 1996. A Drosophila ribosomal protein contains 8-oxoguanine and a basic site for DNA repair activities. EMBO J. 15: 2306-2312
  36. Yarosh, D. B. 2002. Enhanced DNA repair of cyclobutane pyrimidine dimers changes the biological response to UV-B radiation. Mutat. Res. 509: 221-226 https://doi.org/10.1016/S0027-5107(02)00215-4
  37. You, Y. H. and P. G. P. Feifer. 2001. Similarities in sunlightinduced mutational spectra of CpG-methylated transgenes and the p53 gene in skin cancer point to an important role of 5-methylcytosine residues in solar UV mutagenesis. J. Mol. Biol. 305: 389-399 https://doi.org/10.1006/jmbi.2000.4322
  38. Ziemiecki, A., R. G. Muller, F. Xiao-Chang, N. E. Hynes, and S. Kozma. 1990. Oncogenic activation of the human trk proto-oncogene by recombination with the ribosomal large subunit protein L7a. EMBO J. 9: 191-196