Overexpression and Characterization of appA Phytase Expressed by Recombinant Baculovirus-Infected Silkworm

  • CHEN YIN (Sericultural Research Institute, Chinese Academy of Agricultural Sciences) ;
  • ZHU ZHONGZE (Sericultural Research Institute, Chinese Academy of Agricultural Sciences) ;
  • LIN XU'AI (Sericultural Research Institute, Chinese Academy of Agricultural Sciences) ;
  • YI YONGZHU (Sericultural Research Institute, Chinese Academy of Agricultural Sciences) ;
  • ZHANG ZHIFANG (Sericultural Research Institute, Chinese Academy of Agricultural Sciences) ;
  • SHEN GUIFANG (Biotechnology Research Institute, Chinese Academy of Agricultural Sciences)
  • Published : 2005.06.01

Abstract

An Escherichia coli strain with high phytase activity was screened from pig excreta. The phytase gene, appA, was amplified by PCR technique. To obtain large amounts of appA phytase, the appA gene was subcloned into the baculovirus transfer vector pVL1393 under the control of the Polyhedrin promoter. The recombinant baculovirus harboring the appA gene was obtained after co-transfection and screening. The early $5^{th}$ instar larvae of silkworm were infected with the recombinant virus. Using this system, the appA phytase was overproduced up to 7,710 U per ml hemolymph. SDS-PAGE analysis revealed the baculovirus-derived appA phytase to be approximately 47 kDa in size. The optimal temperature and pH of the expressed phytase were $60^{\circ}C$ and pH 4.5, respectively. The enzymatic activity was increased by the presence of 1 mM $Ca^{2+}$, 1 mM $Mn^{2+}$, or $0.02\%$ Triton X-100.

Keywords

References

  1. Abelson, P. H. 1999. A potential phosphate crisis. Science 283: 2015 https://doi.org/10.1126/science.283.5410.2015
  2. Ciofalo, V., N. Barton, K. Kretz, J. Baird, M. Cook, and D. Shanahan. 2003. Safety evaluation of a phytase, expressed in Schizosaccharomyces pombe, intended for use in animal feed. Regul. Toxicol. Pharmacol. 37: 286-292 https://doi.org/10.1016/S0273-2300(03)00005-9
  3. Dassa, E., M. Cahu, B. Desjoyaux-Cherel, and P. L. Boquet. 1982. The acid phosphatase with optimum pH of 2.5 of Escherichia coli: Physiological and biochemical study. J. BioI. Chem. 257: 6669-6676
  4. Dassa, J., C. Marck, and P. L. Boquet. 1990. The complete nucleotide sequence of the Escherichia coli gene appA reveals significant homology between pH 2.5 acid phosphatase and glucose-1-phosphatase. J. Bacteriol. 172: 5497-5500 https://doi.org/10.1128/jb.172.9.5497-5500.1990
  5. Davies, A. H. 1994. Current methods for manipulating baculoviruses. Biotechnology (NY) 12: 47-50 https://doi.org/10.1038/nbt0194-47
  6. Golovan, S. P., M. A. Hayes, J. P. Phillips, and C. W. Forsberg. 2001. Transgenic mice expressing bacterial phytase as a model for phosphorus pollution control. Nat. Biotechnol. 19: 429-433 https://doi.org/10.1038/88091
  7. Golovan, S. P., G. R. Wang, J. Zhang, and C. W. Forsberg. 2000. Characterization and overproduction ofthe Escherichia coli appA encoded bifunctional enzyme that exhibits both phytase and acid phosphatase activities. Can. J. Microbiol. 46: 59- 71 https://doi.org/10.1139/cjm-46-1-59
  8. Greiner, R. and I. Egli. 2003. Determination of the activity of acidic phytate-degrading enzymes in cereal seeds. J. Agric. Food Chem. 51: 847-850 https://doi.org/10.1021/jf0204405
  9. Greiner, R., U. Konietzny, and K. Jany. 1993. Purification and characterization of two phytases from Escherichia coli. Arch. Biochem. Biophys. 303: 107-113 https://doi.org/10.1006/abbi.1993.1261
  10. Kerovuo, J., M. Lauraeus, P. Nurminen, N. Kalkkinen, and J. Apajalahti. 1998. Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis. Appl. Environ. Microbiol. 64: 2079-2085
  11. Kleist, S., G. Miksch, B. Hitzmann, M. Arndt, K. Friehs, and E. Flaschel. 2003. Optimization of the extracellular production of a bacterial phytase with Escherichia coli by using different fed-batch fermentation strategies. Appl. Microbiol. Biotechnol. 61: 456-462 https://doi.org/10.1007/s00253-003-1229-3
  12. Lu, H. S. 1991. The Sericultural Sciences in China, Shanghai Scientific and Technical Publishers, Shanghai
  13. Lei, X. G. and C. H. Stahl. 2001. Biotechnological development of effective phytase for mineral nutrition and environmental protection. Appl. Microbiol. Biotechnol. 57: 474-481 https://doi.org/10.1007/s002530100795
  14. Medin, J. A., L. Hunt, K. Gathy, R. K. Evans, and M. S. Coleman. 1990. Efficient, low-cost protein factories: Expression of human adenosine deaminase in baculovirus-infected insect larvae. Proc. Natl. Acad. Sci. USA 87: 2760-2764
  15. Price, P. M., C. F. Reichelderfer, B. E. Johansson, E. D. Kilbourne, and G. Acs. 1989. Complementation of recombinant baculovirus by coinfection with wildtype virus facilitates production in insect larvae of antigenic proteins of hepatitis B virus and influenza virus. Proc. Natl. Acad. Sci. USA 86: 1453-145
  16. Reddy, N. R., S. K. Sathe, and D. K. Salunkhe. 1982. Phytates in legumes and cereals. Adv. Food Res. 28: 1-92
  17. Rodriguez, E., Y. M. Han, and X. G. Lei. 1999. Cloning, sequencing, and expression of an Escherichia coli acid phosphatase/phytase gene (appA2) isolated from pig colon. Biochem. Biophys. Res. Commun. 257: 117-123 https://doi.org/10.1006/bbrc.1999.0361
  18. Rodriguez, E., J. M. Porres, Y. M. Han, and X. G. Lei. 1999. Different sensitivity of recombinant Aspergillus niger phytase(r-PhyA) to trypsin and pepsin in vitro. Arch. Biochem. Biophys. 365: 262-267 https://doi.org/10.1006/abbi.1999.1184
  19. Rodriguez, E., Z. A. Wood, P. A. Karplus, and X. G. Lei. 2000. Site-directed mutagenesis improves catalytic efficiency and thermostability of Escherichia coli pH 2.5 acid phosphatase/phytase expressed in Pichia pastor is. Arch. Biochem. Biophys. 382: 105-112 https://doi.org/10.1006/abbi.2000.2021
  20. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, U.S.A
  21. Stahl, C. H., D. B. Wilson, and X. G. Lei. 2003. Comparison of extracellular Escherichia coli AppA phytases expressed in Streptomyces lividans and Pichia pastoris. Biotechnol. Lett. 25: 827-831 https://doi.org/10.1023/A:1023568826461
  22. Wang, H. W., Z. F. Zhang, Q. L. Xiao, W. G. Li, and J. L. He. 2001. Insect juvenile hormone enhancing gene expression in silkworm baculovirus vector system. Sheng Wu Gong Cheng Xue Bao. 17: 590-593
  23. Wodzinski, R. J. and A. H. Ullah. 1996. Phytase. Adv. Appl. Microbiol. 42: 263-302 https://doi.org/10.1016/S0065-2164(08)70375-7
  24. Wyss, M., R. Brugger, A. Kronenberger, R. Remy, R. Fimbel, G. Oesterhelt, M. Lehmann, and A. P. Van Loon. 1999. Biochemical characterization of fungal phytases (myoinositol hexakisphosphate phosphohydrolases): Catalytic properties. Appl. Environ. Microbiol. 65: 367-373
  25. Wyss, M., L. Pasamontes, R. Remy, J. Kohler, E. Kusznir, M. Gadient, F. Muller, and A. P. van Loon. 1998. Comparison of the thermostability properties of three acid phosphatases from molds: Aspergillus fumigatus phytase, A. niger phytase, and A. niger pH 2.5 acid phosphatase. Appl. Environ. Microbiol. 64: 4446-4451
  26. Yao, B., C. Y. Zhang, J. H. Wang, and Y. L. Fan. 1998. Recombinant Pichia pastoris overexpressing bioactive phytase. Sci. China (Ser C) 41: 330-336 https://doi.org/10.1007/BF02895110