Simultaneous Removal of Nitrogen and Phosphorus Leached from Farming Feed by the Marine Bacteria, Bacillus sp. CK-10 and Bacillus CK-13, Isolated from Shrimp Farming Pond

새우양식장에서 분리한 해양세균 Bacillus sp. CK-10과 Bacillus sp. CK-13에 의한 양식사료에 포함된 질소와 인의 동시제거

  • Chun Jae-Woo (Department of Life Science, Soonchunhyang University) ;
  • Ma Chae-Woo (Department of Life Science, Soonchunhyang University) ;
  • Kahng Hyung-Yeel (Department of Environmental Education, Sunchon National University) ;
  • Oh Kye-Heon (Department of Life Science, Soonchunhyang University)
  • 천재우 (순천향대학교 생명과학부) ;
  • 마채우 (순천향대학교 생명과학부) ;
  • 강형일 (순천대학교 환경교육과) ;
  • 오계헌 (순천향대학교 생명과학부)
  • Published : 2005.06.01

Abstract

A bench-scale feasibility study was conducted with solid farming feed to evaluate a treatment process for microbiological removal of nitrogen (N) and phosphorus (P). Strains, Bacillus sp. CK-10 and Bacillus sp. CK-13, were originally isolated from water samples of shrimp farming pond. Simultaneous removal of N/P in marine media was monitored in the co-cultures, CK-10 and CK-13. As the results, $400\;{\mu}M\;NH^{+}_4$ and $400\;{\mu}M\;NO^{-}_2$ were eliminated within 12 hours and $NO^{-}_3$ within 36 hours, and $500\;{\mu}M\;PO^{-3}_4$ was completely disappeared within 36 hours from the media. Cultures of CK-10 and CK-13 were applied for removal of N/P leached from shrimp farming fred. HPAEC-PAD system was used to analyze sugars in farming feed, resulting in resolution of various sugars including glucose, galactose, galatosamine, mannose, and fucose. $0.2\%$ (w/v) Pulp densities of the farming feed contained approximately $33.3\;{\mu}M\;NH^{+}_4,\;12.9\;{\mu}M\;NO^{-}_2.\;81.5\;{\mu}M\;NO^{-}_3\;and\;248\;{\mu}M\;PO^{-3}_4$ which could dissolved within 72 hours of leaching in aqueous solution followed by bacterial removal. Complete bacterial removal of N/P was achieved within 84 hours at $0.2\%$ of the feed in co-cultures, whereas single cultures removed to incompletion of N/P during the incubation period. This work demonstrated that test cultures, CK-10 and CK-13 showed effective removal of N/P derived from shrimp farming feed.

고형 양식사료에 포함된 질소와 인의 미생물학적 제거 공정을 알아보기 위하여 벤치규모의 실험을 수행하였다. CK-10과 CK-13 균주가 새우양식장의 물시료로부터 분리되었다. CK-10과 CK-13의 혼합배양에서 N/P의 동시제거 실험을 실시하였다. 그 결과, $400\;{\mu}M\;NH^{+}_4$$NO^{-}_2$는 12시간 이내에 제거되었고, $NO^{-}_3$는 36시간 이내에 각각 제거되었으며, $500\;{\mu}M\;PO^{3-}_4$ 36시간 이내에 제거되었다. CK-10과 CK-13 배양을 새우양식사료에서 용출된 N와 P의 제거에 적용하였다. HPAEC-PAD 시스템을 이용하여 양식사료의 당을 분석하였으며, glucose, galactose, galatosamine, mammonse, fucose 등의 여러 가지 당이 분석되었다. 세균에 의한 질소와 인 제거를 수행하기 위하여 인공 해수에서 $0.2\%$(w/v)의 양식사료를 용출시켰으며, 72 시간동안 용출된 질소의 양은 대략 $33.3\;{\mu}M\;NH^{+}_4,\;12.9\;{\mu}M\;NO^{-}_2.\;81.5\;{\mu}M\;NO^{-}_3,\;248\;{\mu}M\;PO^{-3}_4$였다. 혼합배양은 $0.2\%$ 사료에 포함된 질소와 인을 84시간 이내에 완전히 제거하였으나, 단일배양은 주어진 배양기간동안 질소와 인을 완전제거 하지 못하였다. 이 연구에서 CK-10과 CK-13 배양은 새우양식사료에서 유래하는 질소와 인을 효과적으로 제거하는 것이 입증되었다.

Keywords

References

  1. Ahn, T. S., S. H. Hong, O. S. Kim, J. J. Yoo, and S. I. Choi. 2001. The changes of Bacillus spp. in municipal wastewater treatment plant with B3 process. Kor. J. Microbial. 37: 209-213
  2. Barak, Y., E. Cytryn, I. Gelfand, M. Krom, and J. V. Rijn. 2003. Phosphorus removal in a marine prototype, recirculating aquaculture system. Aquaculture 220: 313-326 https://doi.org/10.1016/S0044-8486(02)00342-3
  3. Gatesoupe, F. J. 1999. The use of probiotics in aquaculture. Aquaculture 180: 147-165 https://doi.org/10.1016/S0044-8486(99)00187-8
  4. Gerhart, P., R. J. Fellows, D. C. Cataldo, and R. M. Nester, W. A. Wood, N. R. Kreig, and G. B. Phillips. 1981. Methods for General and Molecular Bacteriology. American Society for Microbiology. U.S.A
  5. Grommen. R., I. V. Hauteghem, M. V. Wambeke, and W. Verstraete. 2002. An impoved nitrifying enrichment to remove ammonium and nitrite from freshwater aquaria systems. Aquaculture 211: 115-124 https://doi.org/10.1016/S0044-8486(01)00883-3
  6. Guevara, I., J. Iwanejko, A. Dembinska-Kiec, J.. Pankiewicz, A. Wanat, P. Anna, I. Golabda, S. Bartus, M. MalczewskaMalec, and A. Szczudlik. 1998. Determination of nitrite/ nitrate in human biological material by the simple Griess reaction. Clin. Chim. Acta 274: 177-188 https://doi.org/10.1016/S0009-8981(98)00060-6
  7. J.ensen, F. B. 1996. Uptake, elimination and effects of nitrite and nitrate in freshwater crayfish (Astacus astacus). Aquatic Toxicol. 34: 95-104 https://doi.org/10.1016/0166-445X(95)00030-8
  8. Kim, G K. and T. J. Jeong. 2003. A study on eutrophication control in coastal area of Gunsan. J. Environ. Sci. 12: 957-966 https://doi.org/10.5322/JES.2003.12.9.957
  9. Kim, S. K., I. S. Kong, B. H. Lee, L. S. Kang, M. GLee, and K. H. Suh. 2000. Removal of ammonium-N from a recirculation aquacultural system using an immobilized nitrifier. Aquacult.l Eng. 21: 139-150 https://doi.org/10.1016/S0144-8609(99)00026-6
  10. Lim, H. J., J. H. Park, and I. K. Jang. 2004. Effect of probiotics on water quality in the shrimp (Fennerapenaeus chinensis) ponds. J. Kar. Fish. Sci. 37: 91-97
  11. Lee S. M., S. R. Park, T. J. Kim, J. I. Myeong, and Y. J. Chang. 1998. Effects of deletion of P, Ca, Zn, Mg, Fe, K, Mn, or Se from mineral premix in the diets containing 40% fish meal on growth performance of juvenile Korean rochfish (Sebastes schlegeli). J. Kar. Fish. Sac. 31: 252-258
  12. Mevel, G and D. Prieur. 2000. Heterotrophic nitrification by a thermophilic Bacillus species as influenced by different culture conditions. Can. J. Microbial. 46: 465-473 https://doi.org/10.1139/cjm-46-5-465
  13. Moriarty, D. J.. W. 1997. The role of microorganisms in aquaculture ponds. Aquaculture 151: 333-349 https://doi.org/10.1016/S0044-8486(96)01487-1
  14. Paek, N. S., Y. B. Lim, and Y. M. Kim. 2001. Antibacterial activity and growth promotion in aquacultured fish by probiotics. Kar. J. Appl. Microbiol. Biotechnol. 29: 56-61
  15. Pai, S. C., Y. J.. Tsau, and T. I. Yang. 2001. pH and buffering capacity problems involved in the determination of ammonia in saline water using the indophenol blue spectrophotometric method. Anal. Chim. Acta 434: 209-216 https://doi.org/10.1016/S0003-2670(01)00851-0
  16. Porrello, S., M. Lenzi, E. Persia, P. Tomassetti, and M.G Finoia. 2003. Reduction of aquaculture wastewater eutrophication by phytotreatment ponds system I. dissolved and particulate nitrogen and phosphorus. Aquaculture 219: 515-529 https://doi.org/10.1016/S0044-8486(02)00656-7
  17. Queiroz, J. and C. Boyd. 1998. Effects of a bacterial inoculum in channel catfish ponds. J. World Aquacult. Soc. 29: 67-73 https://doi.org/10.1111/j.1749-7345.1998.tb00300.x
  18. Rengpipat, S., W. Phianphak, S. Piyatiratitivorakul, and P. Menasveta. 1998. Effects of a probiotic bacterium on black tiger shrimp Penaeus mondon survival and growth. Aquaculture 197: 310-313
  19. Rhee, J. S., Y. S. Kim, Y. H. lung, and H. J. Rhee. 1997. A study on the determination of N $\(N0_{2}^{-})$. N $\(NO_{3}^{-})$ and N $\(NH_{4}^{+})$ in environmental samples by flow injection analysis. J. Kor. Chem. Sci. 41: 256-265
  20. Uemoto, H. and H. Saiki, 1996. Nitrogen removal by tubular gel containing Nitrosomonas europaea and Paracoccus dentirificans. Appl. Environ. Microbol. 62: 4224-4228
  21. Verschuere, L., G. Rornbaut, P. Sorgeloos, and W. Verstraete. 2000. Probiotic bacteria as biological control agents in aquaculture. Microbiol. Mol. Biol. Rev. 64: 655-671 https://doi.org/10.1128/MMBR.64.4.655-671.2000
  22. Won, T. H., I. K. Han, and K. S. Chu. 1994. Effects of dietary energy, protein level and feed processing method on the growth rate, digestibility and pollution load oflsraeli carp fed high protein diet. Kor. J. Anim. Nutr. Feed 18: 441-451