Influence of Oxy-fluorination of Carbon Fibers on Mechanical Interfacial and Crack Resistance Properties of Epoxy Matrix Composites

산소-불소 처리된 탄소섬유가 에폭시 매트릭스 복합재료의 기계적 계면특성과 크랙저항 특성에 미치는 영향

  • Park Soo-Jin (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Oh Jin-Seok (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Seo Min-Kang (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Han Mijeong (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Kim Hak-Yong (Department of Textile Engineering, Chonbuk National University)
  • 박수진 (한국화학연구원 화학소재연구부) ;
  • 오진석 (한국화학연구원 화학소재연구부) ;
  • 서민강 (한국화학연구원 화학소재연구부) ;
  • 한미정 (한국화학연구원 화학소재연구부) ;
  • 김학용 (전북대학교 섬유공학과)
  • Published : 2005.06.01

Abstract

In this work, the effect of oxy-fluorination on surface characteristics of carbon fibers was investigated in terms of fracture toughness and crack resistance properties of the epoxy matrix composites. The surface properties of the carbon fibers were determined by acid-base values, X-ray photoelectron spectroscopy (XPS), and FT-IR measurements. And their fracture toughness of the composites were evaluated by the interlaminar shear strength (ILSS) and critical stress intensity factor $(K_{lc})$. Crack resistance of the composites was investigated using two types of testing methods, namely critical energy release rate mode I $(G_{lc})$ and mode II $(G_{llc}).\;O_{ls}/C_{ls}\;and\;(O_{ls}+F_{ls})/C_{ls}$ ratio from XPS were increased by oxy-fluorination, due to the oxygen containing functional groups and the formation of $C-F_{x}$ bonds on the carbon fiber surface. It was found that the fracture toughness and crack resistance of the composites had been improved by the oxy-fluorination, which could probably be attributed to the increase in the degree of adhesion at interfaces between the carbon fibers and epoxy resin matrix in the present composite system.

Keywords

References

  1. W. S. Smith, 'Engineered Materials Handbook', ASM International, Ohio, 1987, Vol. 1
  2. J. B. Donnet and R. C. Bansal, 'Carbon Fibers', 2nd Ed., Marcel Dekker, New York, 1990
  3. M. M. Schwartz, 'Composite Materials Handbook', 2nd Ed., McGraw-Hill, New York, 1992
  4. E. Fitzer, 'Carbon Fibers and Their Composites', SpringerVerlag, Berlin, 1985
  5. S. J. Park and J. B. Donnet, 'Anodic Surface Treatment on Carbon Fibers: Determination of Acid-base Interaction Parameter Between Two Unidentical Solid Surfaces in a Composite System', J Colloid Interface Sci, 1998, 206, 29-32 https://doi.org/10.1006/jcis.1998.5672
  6. S. J. Park, M. H. Kim, J. R. Lee, and S. Choi, 'Effect of Fiber-polymer Interactions on Fracture Toughness Behavior of Carbon Fiber-reinforced Epoxy Matrix Composites', J Colloid Interface Sci, 2000, 228, 287-291 https://doi.org/10.1006/jcis.2000.6953
  7. S. J. Park in 'Interfacial Forces and Fields: Theory and Applications', (J. P. Hsu Ed.), Marcel Dekker, New York, 1999, Chap. 9
  8. L. Weitzsacker, X. Ming, and L. T. Drzal, 'Using XPS to Investigate Fiber/matrix Chemical Interactions in Carbonfiber-reinforced Composites', Surf Interface Anal, 1997, 25, 53-63 https://doi.org/10.1002/(SICI)1096-9918(199702)25:2<53::AID-SIA222>3.0.CO;2-E
  9. L. Ibrra, A. Macias, and E. Palma, 'Stress-strain and Stress Relaxation in Oxidated Short Carbon Fiber-thermoplastic Elastomer Composites', J Appl Polym Sci, 1996, 61, 2447-2454 https://doi.org/10.1002/(SICI)1097-4628(19960926)61:13<2447::AID-APP24>3.0.CO;2-#
  10. S. J. Park and M. H. Kim, 'Effect of Acidc Anode Treatment on Carbon Fiber for Increasing Fiber-matrix Adhesion and Its Relationship to Interlaminar Shear Strength of Composites', J Mater Sci, 2002, 35, 1-5 https://doi.org/10.1023/A:1004734725783
  11. C. U. Pittman, Jr., G. R. He, B. Wu, and S. D. Gardner, 'Chemical Modification of Carbon Fiber Surfaces by Nitric Acid Oxidation Followed by Reaction with Tetraethylenepentarnine', Carbon, 1997, 35, 317-331 https://doi.org/10.1016/S0008-6223(97)89608-X
  12. Z. R. Yue, W. Jiang, L. Wang, S. D. Gardner, and C. U. Pittman, Jr., 'Surface Characterization of Electrochemically Oxidized Carbon Fibers', Carbon, 1999, 37, 1785-1796 https://doi.org/10.1016/S0008-6223(99)00047-0
  13. J. I. Paredes, A. M. Alonso, and J. M. D. Tascon, 'Oxygen Plasma Modification of Submicron Vapor Grown Carbon Fibers as Studied by Scanning Tunneling Microscopy', Carbon, 2002, 40, 1101-1108 https://doi.org/10.1016/S0008-6223(01)00255-X
  14. F. J. du Toil and R. D. Sanderson, 'Surface Fluorination of Polypropylene(II) -Adhesion Properties', J Fluor Chem, 1998, 98, 115-119
  15. S. J. Park, M. K. Seo, and Y. S. Lee, 'Surface Characteristics of Fluorine-modified Pan-based Carbon Fibers', Carbon, 2003, 41, 723-730 https://doi.org/10.1016/S0008-6223(02)00384-6
  16. S. J. Park and Y. S. Jang, 'Interfacial Characteristics and Fracture Toughness of Electrolytically Ni-plated Carbon Fibers-reinforced Phenolic Resin Matrix Composites', J Colloid Interface Sci, 2001, 237, 91-97 https://doi.org/10.1006/jcis.2001.7441
  17. H. P. Boehm, 'Chemical Identification of Surface Groups', Adv Catal, 1966, 16, 179-225 https://doi.org/10.1016/S0360-0564(08)60354-5
  18. S. J. Park and J. S. Kim, 'Influence of Plasma Treatment on Microstructures and Acid-base Surface Energetics of Nanostructured Carbon Blacks: N2 Plasma Environment', J Colloid Interface Sci, 2001, 244, 336-341 https://doi.org/10.1006/jcis.2001.7920
  19. X. Li and K. Horita, 'Electrochemical Characterization of Carbon Black Subjected to RF Oxygen Plasma', Carbon, 2000, 38, 133-138 https://doi.org/10.1016/S0008-6223(99)00108-6
  20. T. R. King, D. F. Adams, and D. A. Buttry, 'Aniodic Oxidation of Pitch-precursor Carbon Fibres in Ammonium Sulphate Solutions: The Effect of Fiber Surfaces Treatment on Composite Mechanical Properties', Composites, 1991, 22, 380-387 https://doi.org/10.1016/0010-4361(91)90553-S
  21. L. Dunn, W. Suwito, S. Cunningham, and C. W. May, 'Fracture Initiation at Sharp Notches Under Mode I, Mode II, and Mild Mixed Mode Loading', J Fracture, 1997, 84, 367-381 https://doi.org/10.1023/A:1007346203407
  22. A. Griffith, 'The Phenomena of Rupture and Flow in Solids', Phil Trans R Soc, 1920, 221, 163-198
  23. S. J. Park, F. L. Jin, and J. R. Lee, 'Thermal and Mechanical Properties of Tetrafunctional Epoxy Resin Toughened with Epoxidized Soybean Oil', Mater Sci Eng A, 2004, 374, 109-114 https://doi.org/10.1016/j.msea.2004.01.002
  24. M. C. Chen, D. J. Hourston, and W. B. Sun, 'Distinct Temperature Dependence of Cholesteric Pitch in Lyotropic Cholesteric Solutions of Polypeptide', Polym J, 1999, 31, 199-202 https://doi.org/10.1295/polymj.31.199
  25. T. G. Pressly, H. Keskkula, and D. R. Paul, 'Temperature Dependence of the Fracture Behavior of Nylon 6/ABS Blends', Polym J, 2001, 42, 3043-3055 https://doi.org/10.1016/S0032-3861(00)00696-0
  26. P. Compston, P. Y. B. Jar, P. J. Burchill, and K. Takahasi, 'The Effect of Matrix Toughness and Loding Rate on the Mode II Interlarninar Facrure Toughness of Glass-Fiber/vinlester Composites', Compos Sci Technol, 2001, 61, 321-333 https://doi.org/10.1016/S0266-3538(00)00226-8
  27. A. J. Russel and K. N. Street, 'Factors Affecting the Interlaminar Fracture Energy of Graphite/epoxy Laminates', 4th International Conference on Composite Materials (ICCM-IV), Tokyo, 1982