DOI QR코드

DOI QR Code

Oxidation Behavior of Al-25Ti-8Mn Intermetallic Compound Fabricated by Mechanical Alloying and Spark Plasma Sintering

기계적 합금화법과 방전 플라즈마 소결법으로 제조된 Al-25Ti-8Mn 금속간 화합물의 산화 거동

  • Choi J. W. (Div. of Materials Science and Engineering, Hanyang Univ.,) ;
  • Kim K. H. (Samsung electro-mechanics) ;
  • Hwang G. H. (Div. of Materials Science and Engineering, Hanyang Univ.,) ;
  • Hong S. J. (Div. of Materials Science and Engineering, Hanyang Univ.,) ;
  • Kang S. G. (Div. of Materials Science and Engineering, Hanyang Univ.,)
  • Published : 2005.07.01

Abstract

The oxidation behavior and the thermal stability of nanocrystalline Al-25Ti-8Mn intermetallic compound were investigated. $Al_3Ti$ intermetallic compound, which has a potential for high temperature structural material, was fabricated by mechanical alloying(MA) with $8at.\%$ Mn to enhance the thermal stability and ductility. And Al-25Ti-8Mn intermetallic compound was sintered by spark plasma sintering(SPS) at $700^{\circ}C$. After sintering process, cubic $Ll_2$ structure was maintained without phase transformation and the grain size was about 50nm. To investigate the oxidation behavior of the specimens, thermal gravimetric analysis(TGA) was performed at 700, 800, 900, and $1000^{\circ}C$ for 24 h in $O_2$. As the temperature increased from $700^{\circ}C\;to\;900^{\circ}C$ the weight gain of specimens increased. However at $1000^{\circ}C$, unlike the oxidation behavior of $700^{\circ}C\;to\;900^{\circ}C$, the weight gain of specimen decreased drastically and the transition from linear rate region to parabolic rate region occurred rapidly due to the dense $\alpha-Al_2O_3$.

Keywords

References

  1. I. K. S. Kumer and J. R. Pickens, in Dispersion Strengthened Aluminum Alloys. ed. Y. M. Kim and Y. H. Griffith (TMS, 1988) p. 763
  2. J. Tarnacki and Y. W. Kim, in Dispersion Strengthened Aluminum Alloys. ed. Y. M. Kim and Y. H. Griffith (TMS, 1988) p. 741
  3. M. Yamaguchi, Y. Umakoshi, Prog. Mater. Sci., 34, 1 (1990) https://doi.org/10.1016/0079-6425(90)90002-Q
  4. A. Raman and K. Schbert, Z. Metallkde, 56, 99 (1965)
  5. A. Seibold, Z. Metallkd, 72, 712 (1981)
  6. K. S. Kumar and J. R. Pickens, Scr. Metall., 22, 1015 (1988) https://doi.org/10.1016/S0036-9748(88)80094-2
  7. S. Zhang, J. P. Nic and D. E. Mikkola, Scr. Metall., 24, 57 (1990) https://doi.org/10.1016/0956-716X(90)90566-Y
  8. H. Mabuchi, K. Hirukawa and Y. Nakayama, Scr. Metall., 23, 1761 (1981) https://doi.org/10.1016/0036-9748(89)90357-8
  9. M. Yamaguchi and H. Inui, Intermetallic Compounds, John Wiley & Sons Ltd, 2, 147 (1994)
  10. J. L. Smialek and D. L. Humphrey, Scr. Metall., 26, 1763 (1992) https://doi.org/10.1016/0956-716X(92)90549-T
  11. H. E. Zschanu, V. Gauthier, G. Schumacher and F. Kettenwanger, Oxid. Met., 59, 183 (2003 https://doi.org/10.1023/A:1023030302118
  12. Z. Li, W. Gao, J. Liang and D. L. Zhang, Mater. Lett., 57, 1970 (2003) https://doi.org/10.1016/S0167-577X(02)01115-1
  13. L. J. Parfitt, J. L. Smial, J. P. Nic and D. E. Millola, Scr. Metall., 25, 727 (1991) https://doi.org/10.1016/0956-716X(91)90123-I
  14. G. Chen and H. Lou, Surf. Coat. Tech., 123, 92 (2000) https://doi.org/10.1016/S0257-8972(99)00470-3
  15. G. A. Miklasson and R. Karmhag, Sur. Sci., 532, 324 (2003) https://doi.org/10.1016/S0039-6028(03)00178-X
  16. J. W. Choi, J. B. Park and S. G. Kang, Korean J. Mat. Res. 11(5), 393 (2001)
  17. J. S. Myung, H. J. Lim and S. G. Kang, Oxid. Met., 51(1/2), 79 (1999) https://doi.org/10.1023/A:1018802218912