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Abstract. This paper deals with the stochastic analysis of a three-states
semi-Markov reliability model. Using both the maximum likelihood and
Bayes procedures, the parameters included in this model are estimated.
Next, assuming that the lifetime and repair time are generalized expo-
nential random variables, the reliability function of this system is ob-
tained. Then, the distribution of the first passage time of this system is
discussed. Finally, some of the obtained results are compared with those
available in the literature.
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1. INTRODUCTION

A Markov chain analysis can be used to describe patterns of deposition and condi-
tional probability of occurrence of different rock types through transition probability
matrices; see, for example, Anderson and Goodman (1957), Dacay and Krumbein
(1970), Harbaugh (1985), and Krumbein (1965). Markov chain models have also
been used for subsurface modeling. The occurrence of lithologies is viewed as a
stochastic process. The stochastic analysis of a semi-Markov reliability model is
rarely investigated during the last two decades. For a more extensive overview of
the reliability theory of repairable systems, see Igor (1994), Medhi (1982), Sarhan
and El-Gohary (2003), and Grabski (1999).

In this section, we will display some important definitions and properties of a
semi-Markov process and its kernel. The evolution of many systems naturally ends
as the first failure occurs, because external intervention is not practicable. These

' systems are non-repairable systems. For other systems, generally of high complexity,
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renewal possibilities exist, and their effectiveness therefore depends not only on their
intrinsic reliability bat also on the characteristics of maintenance and repair actions.

Consider the time interval (0,¢). The number of renewals N; occurring in this
interval is a discrete stochastic process, called a renewal process. Once the character-
istics of this process are known the reliability model, as predictions of the evolution
of the system, can be made. Preventive maintenance is scheduled downtime, usually
periodically, in which defined set of tasks, such as inspection and repair, replacement,
cleaning, lubrication, adjustment and alignment, are preformed.

A semi Markov process {X(t) : t > 0} is a stochastic process in which changes
of state occur according to a Markov chain and in which the time interval between
two successive transitions is a random variable whose distribution depends on the
state from which the transition takes place as well as the state to which the next
transition takes place Medhi (1982). Generally a semi-Markov process with discrete
state space can be defined as a Markov renewal process Krumbein and Graybill
(1965), Korolyuk and Swishchuk (1994) and Grabski (1999). Assuming that the
state space S is finite, we can define the renewal kernel as follows:

Definition 1.1 The stochastic matriz Q(t) = [Qij(t);i,j € S], t > 0 is said to be
a renewal kernel if and only if the following conditions are satisfied:

1. The functions Q;;(t) are nondecreasing functions in t.
2. Yjes Qij = Gi(t) are distribution functions in t.

3. [Qij(+00) = P;j,4,j € S] = P is a stochastic matriz.

Definition 1.2 A two-dimensional Markov process {fn,ﬁn,n €N } with values in

S % [0,00) is called a Markov renewal process if and only if [ Korolyuk and Swishchuk
(1994)]

1. Qi = P{§n+1 =J, 01 S tén =1, =tn,... .60 =140, % = to}
= P{tns1 = jPns1 < tlén = i},

-2. P{&o =1i,¥ = 0} = Pio

Obviously, the transition probabilities do not depend on the discrete component
(do not depend on the second components). In the Markov renewal process, the non-
negative random variables 9,,n > 1, define the interval between Markov renewal
times:

n
Tn=Y %, n>17=0. (1.1)
k=1
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Now, let

oo

v(t) = Ipq(r).

n=1

The process v(t) is called a counting process. It determines the number of renewal
times on the segment [0, t].

Definition 1.3 Grabski (1999); A stochastic process {X(t) : t > 0} where X (t) =
€up) is called a semi-Markov process that generated by the Markov renewal process
with initial distribution P? = p(&y = i) and the kernel Q(t),t > 0.

Since the counting process v(t) keeps constant values on the half-interval [t,,tn41)
and is continuous from the right, then the semi-Markov process keeps also constant
values on the half intervals [r, Th+1): Xn(t) = &pfort € [Tn, Tht1). Moreover the
sequence {X(7,) : n € N} is a Markov chain with transition probability matrix
P = {pi;j = Qi;(c0),i,j € S} that is called an embedded Markov chain. The
concept of a Markov renewal process is a natural generalization of the concept of
the ordinary renewal process given by a sequence of independent identically non-
negative random variables 6,,n > 1. The random variables 8, can be interpreted
as lifetimes.
Now, using the definition (1.3), the following lemma can be formulated.

Lemma 1.4 Grabski (1999); If {X(t) : t > 0} is a semi-Markov process with re-
newal kernel

Q(t) = Q’L](t)aza] € Sa te [Oa OO)
then

P{éo =i0,9 =0,& = 1,91 S uty ..y &n = inyn S un} = pip [[ Quipyin (ui)-
k=1
| (1.2)

This lemma can be used to construct the likelihood function of some semi-Markov
reliability models.

2. BAYESIAN ESTIMATION

Assuming that the semi-Markov renewal kernel of the reliability model depends
upon a vector of unknown parameters o = (a1, a9,...,0y), that is

Q(tla) = {Qs;(tle) : 4,5 € S} (2.1)

Let us assume that there is a sequence of random observations z = {(ig, to), (¢1,%1),- . -,

(in,tn)} of the random vector (&o, %), (€1,91), ..., (§n,¥n). We assume that there
exist functions denoted by g;;(t|c), 4,5 € § such that
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t
Qiiltla) = /0 gij(ul)du. (2.2)

Using lemma 1.4, the likelihood function for the given random observations of
the semi-Markov process becomes

n
L(z;0) = pig [] @inric (trle). (2.3)
k=1

In the Bayesian procedure, it is assumed that @ is a vector of random variables.
Then these random variables have a joint probability density function, say g(a),
called a joint prior probability distribution function of a. If the loss incurred when
the vector a of the unknown parameters estimated by & is quadratic, then the value
of the Bayes estimator for a; becomes the posterior expectation, given by:

a; = BE(ai]z) = /aig(ai|z)da,~, 1=1,2,.... (2.4)

It is assumed that the lifetime of the system has a generalized exponential distri-
bution with two parameters. Under the assumptions, that the life and repair times
are generalized exponential, the reliability of the system is derived. The distribution
of the first passage time of the system is obtained.

3. SEMI MARKOV STANDBY MODEL

The semi-Markov process is a convenient tool to describe many reliability models.
In order to describe a reliability model of a standby system with a repair facility,
the following assumptions are adopted:

1. The system consists of one active unit, a standby unit, a switch and a repair
facility.

2. The failed units can be repaired by the repair facility and the repairs fully
restore the units. This means that the element repair means its renewal.

3. The system fails when the active unit fails and repair has not been finished
yet or when the active unit fails and the switch fails .

4. The lifetimes of the active units can be represented by independent and identi-
cal non-negative random variables ¢; with distribution function F(t) = P{{; <
t},t > 0.

5. The lengths of repair periods of the units can represented by independent
and identical non-negative random variable £, with the distribution function
G(t) = P{§& < t}.
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6. The event E denotes the switch-over as the active unit fails. Then the probabil-
ity that the switch performs when required is represented by P(E) = o, (0 <
(03] S 1)

7. The whole system can also be repaired, and the failed system is replaced by a
new identical one.

8. The replacing time is represented by a non-negative random variable {3 with
distribution function H(t) = P{¢3 < t}.

9. Finally, we assume that the random variables £;(i = 1,2,3) and E are inde-
pendent.

Under the above assumptions, the states of the prescribed system can be con-
sidered as follows:

1. both active and standby units are "Up”
2. the failed unit is repaired and the standby unit is operating.
3. the system failure.

Let 7§,7y,75,... denote the instants when of the state of the system changes
where 7 = 0 and let {Y(¢) : ¢ > 0} be a stochastic process with state space
S = {1,2,3}. This process keeps constant values on the half intervals [7;,7;,,) and
is continuous from the right. There fore, it is not a semi-Markov process.

Let us define a new stochastic process as follows:

Assuming that 79 = 0 and 7,,n = 1,2,... represent the instants when the

components of the system failed or the whole system renewal. The stochastic process
{X(t) : t > 0} defined by

X(0)=0,X(t) =Y(rn)fort € [Tn, Tn+1) (3.1)

is a semi-Markov process and its kernel is given by the following matrix

0 Q2 Qi3
0 Qa Qo (3.2)
Ry 0 0

The semi-Markov process {X(¢),t > 0} is completely specified by its semi-Markov
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kernel. Let us deduce the elements of the semi-Markov kernel as follows:

Q12 P{X Tn+1 =2 19n+1 < th(Tn = 1} P{E 63 < t} = (XlF )

@13(t) = P{X(1p41) = 3,9n41 < t| X (10 =1}
— P{B,& <t} = (1 a)F(t)

QR22(t) = P{X(Tht1) = 2,9p41 <t X (1) = 2}
= P{E,&; <t,& > &} = o f{(1 — G(t))dF(t)

Q23 P{X Tn+1 = 3 ‘19n+1 < t|X Tn —2}
= P{¢ <t,& > &} + P{E, §1<t §2<§1}
= [l - G@)d (t)+<1—a1 Jo G(OF(2)
=F(t) — o fo (t)dF(t),

@31(?) P{X Tp+1) =1 ’l9n+1 < tY () =3}
=P{{ <t} =H(t

Using the relations between the elements of the semi-Markov kernel and their
corresponding densities ¢;;,%,j € S we get:

qi2(t) = a1 f(t), qu3(t) = (1 —a1)f(t), ga1(t) = h(t) (3.4)
13(t) = a1 G()f (1), qz3(t) = [1 — aa G(B)]f (2). '

It is observed in Gupta and Kundu (2001) that the two-parameter generalized
exponential distribution can be used quite effectively in to analyze many lifetime
data, particularly in place of two-gamma and two parameter Weibull distributions.
The two-parameter generalized exponential distribution has increasing or decreasing
failure rate depending on the shape parameter.

Now, we assume that the lifetime of the active units have identically generalized
exponential distribution with parameters a; and a3. That is,

f(t) =ogaz (1 —e )2zl e=ast ) 03 >0, ¢ > 0. (3.5)
Substituting from (3.5) into the densities (3.4), we get

q12(t|a) = ajonas(l — e~a3t)o2—1 g—ast

q13(tla) = (1 — a1)agaz(l — e~ @3t)a2—1 g—ast,

g22(tla) = a1a203G(t) (1 — e~3t)a2—1 g—ast (3.6)
g23(t|la) = azas3[l — a1 G(t)](1 — e~2st)az—1 g—aat

g31(t) = h(?).
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4. MAXIMUM LIKELIHOOD ESTIMATES

In this section the maximum likelihood estimators of the unknown vector o =
(01, a, a3) included in the generalized exponential reliability model are presented.
Suppose that z denotes the observations {(ig, to),

(41,t1), ..., (in, tn)} of two dimensional random vector of variables, {(£q, 90), (€1,91),
ooy (&ny9n)} where ig,41,...,t, and to,t1,...,t, € [0,00). Further, we assume that
this observation is classified as follows:

Let

A,’j = {k : 'ik—l = i,ik =j,k‘ = 1,2,...,77,}

be the set of numbers of direct observed transition from the state i to the state j
and n;; is the cardinal number of the set A;; which represents the number of direct
transitions from the state ¢ to state j . In the present case we find that

112 + n13 + nog + Ng3 + N3 =n. ‘ (4.1)

Based on the above observation, the sample likelihood function L(z;a) can be ob-
tained as follows:

Using (2.3) and (3.6) the sample likelihood function L(z;q) becomes
na23
L(z; @) = o T™2(1— 1) o alf'e ™7 H (1—emostk)a2—1 H[l—alG(tk)] (4.2)
kel k=1 ‘

where
T= Z Tk, M = ng3 +n13 + Nog +n1g, L = AssUA13UA»UA;,.
keL

Finally, the log of the sample likelihood function L can be written in the following
form

L=m[lnoy +Inasg] + (ng2 + ni2) Ina; + niz3ln(l — o) — a3

+ f In[1 — 01 G(tg)] + (ag — 1) Z In(1 — e~ %st), (4.3)
k=1 keL

The maximum likelihood estimates &; are the values of o;,4 = 1,2, 3, that maxi-
mize the sample likelihood £. Equivalently &;,7 = 1,2,3 maximize the log sample
likelihood since it is a monotone function of L(z, a).

The maximum likelihood equations are given by :

oL
8a,~

Using (4.3) and (4.4) the maximum likelihood equations are

=0, i=1,2,3. (4.4)
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=0

0L _nyptme mg % G(tk)
6a1 (23] 1- (631 k=1 1- alG(tk)

B_L=T_+Zln1_e astk) = ()
day kel
3[: tIC e_astk
B = + o Tl > T = (4.5)

kel

The maximum likelihood estimates (MLEs) ¢, 1 = 1,2,3 for the unknown para-
meters ¢; are the solution of the non-linear system (4.5). As it seems, the general
solution of this system is very difficult to find in a closed form. The general solution
is intractable and numerical procedures are required.

From (4.5), we obtain the MLE of a; as a function of a3, namely d4(a3) where

—m
SkerIn(l —emast)’

Go(a3) = (4.6)

Putting do(as) in (4.3) we obtain

g(o1,03) = (ng2 + ni2)Inen + ni3ln(l — o) + mlnas — ras

—m In (Z -log(1 — e’a3i’°)) - Z In(1 —e™@%). (4.7

keL kel

Therefore, MLEs of both o; and a3, namely d; and d3 can be obtained by maxi-
mizing'(4.7) with respect to a; and a3 respectively. It is observed that both & and
a3 can be obtained from the fixed point solution of hq(c;) and ha(a3) respectively,
where

nas 1 n23 -1
hilan) = {no2 + 12 +na3 — ) ——— + > (48
1(a) ( 22 12 + n23 k2=:1 1—a1G(ty) ) [ Z 1 —alG(tk):l (48)

-1
tpe™ st /(1 — e~ %at)
ha(as) = [Z"GL - . —Z 1_e_asth ) (4.9)

ZkEL ].Il(]. - e_astk) kEL

where, the function G(tx) can be considered as a known function of the observation
data z.

An iterative procedure can be used to solve the Eqs (4.8) and (4.9) . The MLEs
@1, @3 can be obtained from (4.8) and (4.9).

Now, we state the asymptotic normality results to obtain the asymptotic variance
of the unknown parameters Gupta and Kundu (2001).
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The elements of the Fisher information matrix are as follows, for ag > 2
L K [Gt)
B _3_2 _ N2 -‘-2 niz Z _ G
Oaf a3 1 —a1)? [l —aaG(2 )]

5(25) = -2 5(ZE) = -2 o1 - e+ 860 - 9001

Oaj as Oaj a3

2
E( L ) _ ﬂ[ B (T(ap) — T(1)) — (T(az + 1) —\I/(l))]

Jdagdag a3z lag —1
(4.10)
and for 0 < as < 2, we have

0L m o’L mag [P, _o g2
el I L - —2t(1] _ g ty22— 244
E (801%) a3’ E <8a28a3> a3 /0 tem (1 — ey dt < oo,

2 _ oo
B (6 g) _m _mes(e 1) |7 et - ettt < co. (4.11)
daj o3 aj 0

In what follows we will study some important special cases:
In order to obtain the first special case, the following assumptions are needed:

1. The distribution of the time lengths of the repair periods of the units satisfy
the condition: 1 — a;G(tx) = 1 — a; for every k € Ag;.

2. The lifetimes of the active units can be represented by identically generalized
exponential random variables with one parameter ap. That is, a3 = 1.

In this case, the MLEs are given by:

& _ Mgz + N2 by = —m
' m YkerIn(l —e7t)’

(4.12)

The second special case can be obtained by considering the following assumptions:

1. The distribution of the time lengths of the repair periods of the units satisfy
the condition: 1 — a1 G(tg) = 1 — a; for every k € Ags.

2. The lifetimes of the active units can be represented by identically exponential
random variables with parameter 3. That is, a9 =1

In this case, the MLEs are given by:

L _naa+tnig T
b= ——, 3= —.
m m

(4.13)
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We assume that the value of the parameter oy is known and only the values of
the parameters o) and a3 are known. Thus @ = (0, @3) is the vector of unknown
parameters.

5. BAYESIAN PROCEDURE

As we have seen in the previous section, the maximum likelihood estimates of the
unknown parameters have no closed forms. Therefore, we look for another approach
that may enable us to derive estimations of these parameters in closed forms. As
we will see, the Bayes approach gives such advantage. In order to obtain the Bayes
estimate of the unknown parameters the following assumptions are needed.

1. The parameters o;(i = 1,2) behave as independent random variables.

2. The prior distribution of the parameter a;(i = 1,2) is the symmetrical tri-
angular distribution on the interval [a;,b;]. That is, the pdf’s of o; is given

by
glg(ei —|los —y]) for a; €a;, b] (1=1,2)
9i(a;) = (5.1)
0 otherwise.

3. The loss incurred when a; and s are estimated respectively by &; and é- is
quadratic. That is,

e, &) = ky (01 — 61)® + ks (0 — G2)?, Ky, k> 0. (5.2)

Using the assumptions 1 and 2, the joint prior pdf of o, namely g(a) takes the form

sz glz(ei — s —vs])  for o; € [ay, bi],
9(a) = (5.3)

0 otherwise.

To establish a theorem about the joint posterior pdf of g, the following lemmas are
needed.

Lemma 5.1 Let I,3(n,U) be defined by the following integral

b

Lp(n,U) = / MUz, n=0,1,2,..., (5.4)
fhen I U) = = (—1)F n! gkt _ gnkpra
ap(n,U) = kX_% (n = )(In U)F+1 [ —am e (5.5)
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Lemma 5.2 Let I, 3(n,m) be defined by the following integral

b
Inp(n,m) = / 2"(1 — z2)™dz, m,n=0,1,2,..., (5.6)
a
Then o |
Tp(n,m) Z n: [ _ o)™kl _pnkq b)m+k+1] (5.7)
im0 (
where (M) =m(m+1)(m+2)...(m+k—1).

Now, we proceed to present the theorem that gives the joint posterior pdf of o for
the given observation data z.

Theorem 5.1 Using the given observation data z and the assumptions 1 and 2 the
joint posterior pdf of o is given by

2
glalz) = _l_ {H(Gi — oy — Vi')ai(n22+n12)5li+m52i(1 _ ai)an(az'l)Jzi}

30 | L
X ﬁ[l — a1 G(tg)] (5.8)
k=1
where ®(0) is given by
®(0) = Y (=1)'ndu(0) 1 (0) (5.9)
1=0

and

I1(0) = I, 1y (n22 + nio + 1+ 1,m13) — @114, 1, (N2 + 112 + 1, n13)
+b11y b, (n22 + na12 + 1,n13) = L, b, (N2 + n12 + 1+ 1,113)

IQ(Q) Iaz,,,?(m+1 U) a2 ,jz(m U) +b2I,,2 b2(m U) 1,2,52(m+1,U). (5.10)
Proof. The joint posterior of a = (a3, as) is related to the joint prior pdf of ¢ and

the sample likelihood function according to the following relation Martz and Waller
(1982).

glalz) = 52 (5.11)

where:
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Since a; and oy are independent, then the joint prior of @ becomes g1 (a1 )g2(a2).
Then substituting from (4.2) and (5.1) into (5.11) we can obtain the numerator of
(5.11) and the denominator ®(0) can be obtained as follows

XK l 2 [ (n22+ni2+l)d1i+méa;
2@ =3 (-0'n]] [ {(ei = las = D
=0 i=1"%
X (1 — og)M3duylei—Doe gg,, (5.12)
If .
1
I(0) = / (€1 — |1 — uﬂ)aﬁ"”*””*”(l - a1)"¥da; (5.13)
a1
and A
2
B0) = [ (€2~ loa = a)oF U das, (519
a2
then

Ill(Q) = / (011 — al)a(l"22+n12+l)(1 - al)"13da1
a

b1
+/ (by — al)agn”‘{'mwl)(l —a1)™3da;. (5.15)
v
Using (5.5), we get
Ii(0) = I, b (n22 + na2 + 1+ 1,n13) — a1la, 4, (n22 + n12 + 1, 1n13)

+b11,, b, (no2 + nia +1,n13) — Ly py (n22 + 112 + 1+ 1,n13)
and using (5.7), we get
I2(Q) = Ia2,y2 (m +1, U) — azfaz,,,z (m, U) + b2Iu2,b2 (m, U) — IV2,b2 (m + 1, U) (5.16)

Using.(5.12), (5.15) and (5.16), we can write ®(0) as given in (5.9) which completes
the proof.

Corollary 5.3 The marginal posterior pdf of oy(l = 1,2) can be obtained from the
joint posterior pdf of a = (a1, as) using the following relations

ba b
gi(oalz) = [ glale)das,and gi(aale) = [ glale)dor.  (5.17)

a2 ai

The proof of this corollary can be reached by substituting from (5.8) into (5.17) and
making some arrangements.

Theorem 5.2 Under the assumptions 1 — 3, we have
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1. The Bayes estimators for a; and ay are

. 90, bi2)

=22 1=12 5.18

2. The minimum posterior risks associated with & and &g are

2
Var(ay)z) = (I’(Zilzbj(sm) - {(b(gé’g()sm), l= 1,2} (5.19)
where nas
®(p1,p2) = _(—1)'nlu(p)L2(p) (5.20)
1=0

and Iy;(p), I2(p) are given by

Ii(p) = I, v, (na2 + niz + L+ p + 1,m13) — arfe; 0, (n22 + n12 + 1+ p,n13)

+b11,, b, (no2 + N2 + [ + p,n13) — Ly p, (No2 + 112 + 1 + +pl,m13)

and

I(0) = In, vy (mAp+1,U)—a2ly, vy (m+p, U)+b2ly, 4, (m4p, U) =1, p,(m+p+1,U).
(5.21)

Proof. If the squared error loss function is used, then the Bayes estimator of the
unknown parameter o;(¢ = 1,2) and associated minimum posterior risk are defined
as the posterior expectation and posterior variance of that parameter respectively
Igor (1994). That is, the Bayes estimator for o is

b;
&; =/ a;gi(a;|z)day, = 1,2 (5.22)
a;
and the minimum posterior risk associated with &; is

b;

Var(ay|z) = /

a;

bi 2
afgi(a”z)dai - {/ aigi(ai|z)da,~} ,1=1,2 (5.23)
a;

Substituting from (5.17) into (5.22) and (5.23) and making some arrangements, we
can reach the formula (5.18) and (5.19), which completes the proof.
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6. SYSTEM RELIABILITY

In what follows, we will obtain the system reliability of the semi-Markov relia-
bility model. Now, we will define the first passage time. To define the first passage
time, we must answer the question "how many transitions will the process take to
reach state j for the first time if the system is in state ¢ at time zero”. The first
passage time of the continuous-time semi-Markov process can be measured in time
or in terms of the number of transitions. We will obtain the distribution ©;4(¢) of
the first passage time from the state 7 to a state in a subset A C S given that state
¢ was entered at time zero and zeroth transition.

Assuming that A C § = {1,2,3} and A = § — A, we introduce the following
notations

Ay =inf{n €: X(m,) € A}, (6.1)

and
fia(n) = P{A4 =n|X(0) = i},Ta = Tan- (6.2)
Thus, the function ©;4(t) is given by

@ia(t) = P{T4 < t|X(0) =4}, i€ A (6.3)

represents the distribution of the first passage time of the semi-Markov process
{X(t) : t > 0}, from the state i € A to state in the subset A.

Now, we will define, a mean and the second moment of the first passage time
distribution as follows

— oo _ fers]
i = / td0;4(t), and, ©%, = / £2d0; A (1). (6.4)
0 0

If A denotes the subset of the failed states of the model and i € A is an initial
operating state such that P{X(0) = i} = 1, then the random variable T4 represents
the lifetime or the time to failure of the considered system. That is, the reliability
of the system is

R(t) =1—0;4(t), t > 0. (6.5)

Using Korolyuk and Swishchuk (1994) and Grabski (1999), some of the reliability
characteristics of the system can be defined as follows:

o 2 ® 2
a= [ttt = [ ot (6.6)
To derive the reliability of the system, we will establish the following theorem.

Theorem 6.1 Consider the following systems:

1

JEA k€A

Gia(t) =Y Qi) + Y /Ot dQra(t — u)gir(u)du, i € A (6.7)
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2.
& 0ia=gi+ Y pubir, i€ A (6.2)
kcA
3. B . ) .
0ia=32+2 @ubea+ Y pubiy, i€ A, (6.9)
keA keA

which consist of a system of integral equations (6.7) and two linear algebraic systems
of equations (6.8) and (6.9). These systems have the only solution ©;4(t),6;4 and
G?A respectively, if the following conditions are satisfied

1.
fia=1VicA (6.10)
2.
Vi,j€S3d>0st g <d (6.11)
3.
w -
Y K fia<ooV, i€ A (6.12)

k=1

Proof. The system of integral equations (6.7) is equivalent to its Laplace-Stieltjes
system
Oia(s) =D di(s) + Y Gix(s)Orals), i€ A (6.13)
JjeA keA
where

Guats) = [ LMy gy = [Tetguan 619

In the present model A = {3} and A = {1,2}. From the solution of the system
(6.14), we have

Oa3(s) = 12_3(52)2, O13(s) = Gua(s) + 1(11_2_—(133. (6.15)

Using the Laplace transformation, the reliability function (6.5) of the present model
is given by

. 1-6
R(s) = ———:1—3—(1) (6.16)
From the system of equations (6.8), we can get
O3 = G1 + {0 (6.17)
— P22

For the present model we have:
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1=0=E¢)= /Ooo gz te (1 — g7t 2271 g4
= L (W(a+1) - T(1)} (6.18)
o3

where ¥(.) denotes the digamma function.

00
le = /0 q21(t)dt = Q.

Substituting (6.17) into (6.16) we can obtain the mean of the lifetime of the present
system as follows:

aq
1—po

ﬂﬂW@=D=%=iW@ﬁﬂ—Wmﬂ+ } (6.19)

where o
Doy = 00 / G(t)(1 — e=5%) e=o3¢ g, (6.20)
0

Important special case can be obtained when as = 1, the lifetimes of the active units
can be represented by identically exponential random variables with parameter as.
Therefore, the mean of the lifetime of the system is given by
— 1 (03]
E(T4X0)=1)=b3=—+ ————
TAXO) = 1) =iy = — + 77—
This result approves of the result obtained by Grabski (1999) and El-Gohary (2004).
This shows the effectiveness of the present method.

o
» D22 =a1a3/ G(t)e ™t (6.21)
0

7. CONCLUSION

Finally, we conclude that the likelihood and Bayes procedures are used to obtain
estimations of the parameters included in a three-state standby with repair semi-
Markov model. The distribution of the first passage time is discussed. The reliability
function of this model is derived. Some special cases are discussed.
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