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ABSTRACT : 25-Hydroxycholesterol (cholest-5-ene-3, 25-diol, 25-OHC) showed the cytotoxicity on HeLa
human cervix and NCI-H460 human lung cancer cells, 0.5 M of 50% inhibitory concentration. We studied
25-OHC as the possibility of radiation sensitizer. The combination effect of 25-OHC and v-irradiation
measured using flow cytometer with propidium iodide stained cells. The combined treatment of 25-OHC
and y-irradiation did not show significant enhancing effects on Hela and NCI-H460 cells.
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Introduction

Oxysterols, or oxygenated derivatives of cholesterol, are
naturally occurring compounds present in vegetal and
animal organisms. Oxysterols can be formed either from
Janosterol, the precursor of cholesterol, or from diversion
of squalene 2 : 2-epoxide to squalene 2 : 3, 22 : 23-dioxide
and subsequent cyclization of epoxysterols, or from
controlled enzymic oxidation of endogenous cholesterol
or exogenous cholesterol derived from low-density
lipoproteins, LDL(Gibbons, 1983; Gupta, et al., 1986).

Several of these oxygenated cholesterols have been
reported to be highly cytotoxic towards normal and
tumor cells, according to their structure and the cell type
(Schroepfer, 2000). Cytotoxicity has been identified to
involve apoptosis in certain cell lines (Hyun, et al,
1997; Hietter, et al., 1986; Christ, et al.,, 1993; 1991;
Aupeix, et al,, 1995; Ayala-Torres, 1999). Though not
fully elucidated, the exact mechanism through which
oxysterol induces cell death is related with the
generation of an oxidative stress (Ryan, et al., 2004). 7-
keto-cholesterol and cholestane-triol have been shown
to increase the antioxidant enzyme activities, such as
catalase (CAT), superoxide dismutase (SOD) and
glutathione peroxidase (GPx) in rat hepatocytes, which,
in turn, means oxidative stress generation (Cantwell and
Devery, 1998).

Their cytotoxicity mainly results from the inhibition
of HMG-CoA reductase, a key-enzyme in the endogenous
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cholesterol synthesis pathway. Thus, in dividing cells
treated with oxysterols, membrane formation is impaired
and therby their growth is prevented or severely
hindered (Schroepfer, 2000; Luu, 1988; Chen, 1984).
Moreover, the interaction of these substances with
plasma membranes following their insertion into the
phospholipid bilayers could lead to structural distortion,
which may also participate in their cytotoxicity.
Oxysterols affected the membrane enzyme activities
(Moog et al, 1991), and their permeability to ions
(Boissoneault and Heiniger, 1985) and proteins
(Boissoneault ez al, 1991). Also, it was reported that
cholesterol oxides can inhibit DNA synthesis in
replicating cells (Astruc, ef al., 1983; Defay, et al,, 1982)
and that they can potentially disturb normal cellular
metabolism and homeostasis by inducing excess lipid
accumulation in cells (Higley and Taylor, 1984).

Thus, these cholesterol oxides treatment can alter cellular
functions and in this paper, we investigate whether 25-
OHC, a potent oxysterol, could enhance the susceptibility
to ionizing radiation HeLa and NCI-H460 cells.

Materials and Methods

Cell culture

Hela human cervix and NCI-H460 lung cancer cells
were obtained from the American Type Culture
Collection (Rockville, MD, USA). Both of the cells were
grown in RPMI 1640 medium supplemented with 10%
fetal bovine serum, penicillin and streptomycin.
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Irradiation

Cells were plated in 6-cm dishes and incubated at
37°C under humidified 5% CO,, 95% air in culture
medium until 70% to 80% confluent. Cells were then
exposed to y-rays from a "*’Cs g-ray source (Atomic
Energy of Canada, Canada, located in Korea Institute of
Radiological and Medical Sciences, Seoul, Korea) at a
dose rate of 3.81 Gy/minute.

Reagents

25-OHC was obtained from Sigma, freshly dissolved
in ethanol, and the final concentration of 25-OHC did
not exceed 0.2%.

Clonogenic forming assay

HeLa human cervix and NCI-H460 human lung
carcinoma cells were seeded into 60 mm dishes at a
density to produce approximately 300 colonies per dish
and it was treated at various doses of 25-OHC and were
incubated for 10-14 days. The formed colonies were
fixed with 75% ethanol and 25% acetic acid, and stained
with trypan blue. The number of colonies consisting of
more than 50 cells was counted.

Flow cytometric analysis

The cell death was measured by flow cytometry with
propidium iodide (PI) staining. Cells were treated with
25-OHC at 10 uM alone, y-irradiation at 10 Gy alone,
or combination of both 25-OHC at 10 uM and y-
irradiation at 10 Gy. After 24, 48, and 72 h., the cells
were washed with ice-cold PBS and treated with 1 mg/
ml RNase for 30 min at 37°C. Cellular DNA was
stained with 50 pg/ml PI and in 2 mM EDTA-PBS.
Cells were then analyzed by FACScan flow cytometer
(Becton Dickinson, Franklin Lakes, NJ, USA). From
the analysis of DNA histograms.

Statistical analysis

All the measurements were made in triplicate. The
results were subjected to an analysis of the variance
(ANOVA) using the Turkey test to analyze the
difference. p <0.05 were considered significantly.

Results

Clonogenic survival assays were perf'ormed at 0.5, 1,
2, and 4 uM of 25-OHC on NCI-H460 and Hel.a cells.
As shown in Fig. 1 and 2, clonogenic survival of Hela
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Fig. 1. Effect of 25-OHC on NCI-H460 cells in vitro. Cells were

treated with various concentrations of 25-OHC. Cells were

allowed to grow for 10-14 days and were stained with trypan

blue and scored for colony formation. Results are given as means
+=S.D.
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Fig. 2. Effect of 25-OHC on HeLa cells in vitro. Cells were
treated with various concentrations of 25-OHC. Cells were
allowed to grow for 10-14 days and were stained with trypan
blue and scored for colony formation. Results are given as means
+S.D.

and NCI-H460 cells was inhibited at dose dependent
pattern in 25-OHC treated cells. The 50% of inhibitory
concentration of 25-OHC on Hela and NCI-H460 cells
was about 0.5 uM. These data indicate that 25-OHC
can inhibit the cell growth of Hela and NCI-H460 cells
in vitro. We next investigated whether combined treatment
of 25-OHC and y-irradiation showed the radiation
sensitivity. The extent of radiation sensitivity was
performed using flow cytometry with propidium iodide
staining at 24, 48, and 72h. As shown in Fig. 3,
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Fig. 3. Combined effect of 25-OHC on NCI-H460 celis in vitro. The cell death was measured by flow cytometry with propidium iodide

(PI) staining.

percentage of cell death in NCI-H460 cells was 7% in
25-OHC, 17% in 10 Gy radiation, 15% in combined
treatment at 24h, 8% in 25-OHC, 13% in 10 Gy
radiation, 10% in combined treatment at 48 h, and 9%
in 25-OHC, 11% in 10 Gy radiation, 8% in combined
treatment at 72 h. As shown in Fig. 4, percentage of cell
death in HeLa cells was 3% in 25-OHC, 2% in 10 Gy
radiation, 3% in combined treatment at 24 h, 7 % in 25-
OHC, 4% in 10 Gy radiation, 6% in combined
treatment at 48 h, and 26% in 25-OHC, 13% in 10 Gy
radiation, 20% in combined treatment at 72 h. Taken
together,' 25-OHC showed the cytotoxicity on NCI-
H460 and HeLa cells, however, did not enhance the
radiation sensitivity.

Discussion

The purpose of this study was to determine whether

25-OHC could act as sensitizer to enhance the action of
ionizing radiation (IR). It was reported that 25-OHC
induced apoptosis in human lymphoblastic leukemic
CEM cells via c-myc gene regulation (Ayala-Torres, ef
al, 1999) and in THP-1 cells through the accumulation
of cell cycle at GyM (Lim, ef al., 2003), also 25-OHC
treated cells arrest at the G; phase of the cell cycle in
various cell line (Ayala-Torres, et al., 1997). Previous
study have shown that the inhibition of caspase-3
protects against 25-OHC induced apoptosis (Nishio and
Watanabe, 1996), and in the treatment of 7B-OHC, the
increase of caspase 3 was observed in U 937 cells
(O’Callaghan, 2002). Also, there are experiments with
oxystrols showing various biological effect such as,
inhibition of DNA synthesis and cell proliferation and
alteration of intercellular communication throughout
gap junctions (Marinovich, ef al., 1995).

On the other hand, exposure to ionizing radiation is
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Fig. 4. Combined effect of 25-OHC on HeLa cells in vitro. The cell death was measured by flow cytometry with propidium iodide (PT)

staining.

believed to cause cell damage via the production of
reactive oxygen species to induce oxidative stress (Lin,
et al., 2003), and apoptotic signaling via mitochondrial
pathway involving caspase-9 and -3 activation (Verheij
and Bartelink, 2000; Fei and El-Deiry, 2003). Before
occurring caspase cascade to induce apoptosis, mitoc-
hodrial permeability transition (MPT), one of major
pathways involved in stress-inducing apoptosis, is
causative event (Kim, e al, 2003). Mitochondrial
membrane permeabilization is considered to be one of
the initial events of the apoptotic process induced by
chemotherapeutic drugs (Green and Reed, 1998;
Crompton, 1999; Gottlieb, 2000). Therefore, combined
treatment of oxysterol and IR for cancer is expected to
be an essential aspect of attempts to remove tumor
cells, in a synergistic manner.

Radiosensitizer can enhance radiation-induced cell
death through by perturbing various physiological
phenomena such as, inhibition of angiogenesis, arrest or
disruption of the cell cycle, induction of apoptosis, and
blockade of cell survival signaling pathways (Chernikova,
et al, 1999; Edwards er al, 2002; Eshleman ef al.,
2002; Sarkaria ef al., 1998; Wang et al., 2001).

Only a single treatment often causes therapeutic
resistance and side effects in all types of cancers.
Chemotherapy-radiotherapy combination is based on
the theory that two types of cancer treatment act via
different mechanisms (Park, et al,, 2004).

The use of a combination of radiation and chemotherapy
is often called chemoradiation in the medical literature
(Kvols, 2005). The purpose of combined treatment for
cancer, or chemoradiation, is essential part to improve
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cancer patient survival not only to enhance the
therapeutic effect but also to use the advantages of each
single treatment, decreasing treatment doses and side
effects of the patient, simultaneously. An ideal radiation
sensitizer should have properties of more effective in
increasing the apoptotic cell death of tumor cells and
less toxic to normal cells. However, the ideal radiation
sensitizer does not exist today (Kvols, 2005). Therefore,
a series of many trials for finding out a new candidate
compound, whether it is naturally occurring or synthe-
tically made, which have a closeness to ideal chemo-
radiation should be recognized as important future
alternatives for clinical treatment. In this paper, we
would like to make an attempt to investigate whether
25-OHC have properties of radiation sensitizing effect
or not. Taken together, 25-OHC showed the cytotoxicity
on NCI-H460 and HeLa cells, however, did not enhance
the radiation sensitivity.
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