Synthesis of Diacylglycerol-Enriched Functional Lipid Containing DHA by Lipase-Catalyzed in Solvent-Free System

비 용매계에서 DHA가 함유된 Diacylglycerol의 효소적 반응에 의한 합성연구

  • Kim, Nam-Sook (Department of Food Science and Technology, Chungnam National University) ;
  • Lee, Ki-Teak (Department of Food Science and Technology, Chungnam National University)
  • Published : 2005.08.31

Abstract

Structured triacylglycerol (SL-TAG) was synthesized by enzymatic interesterification with algae oil and soybean oil in solvent-free system. Structured di- and monoacylglycerol (SL-DAG/MAG) were produced by glycerolysis with SL-TAG and glycerol catalyzed by lipase. Reactions were performed by sn-1.3 specific Lipozyme RM IM lipase from Rhizomucor miehei (interesterification, 11%; glycerolysis 5% by weight of total substrates) in solvent-free system using stirred-batch type reactor. SL-DAG/MAG contained TAG (42,3 area%), 1,3-DAG (19.2 area%), 1,2-DAG (22.2 area%), MAG (16.0 area%), and free fatty acid (0.2 area%). Iodine and saponification values of SL-DAG/MAG were 208.8 and 179.6, respectively. SL-DAG/MAG appeared yellowish in color.

지방산 TAG 분자의 sn-1,3 위치에서 특이적으로 반응하는 Lipozyme RM IM(from Rhizomucor meihei)을 촉매로 이용, 비용매계(solvent-free system)조건에서 glycerolysis를 통하여 조류유(from Schizochytrium sp.)와 대두유로부터 DAG, MAG 함유 기능성 유지를 합성하였다. 합성된 유지는 DHA(16.0mol%)와 linoleic acid(32.4mol%), palmitic acid(18.2 mol%), oleic acid (14.0mol%), EPA(6.7mol%) 및 myristic acid(4.9mol%) 등을 함유하고 있었으며, 유지 내 TAG 분자의 sn-2 위치에는 DHA(21.0 mol%)와 linoleic acid(29.2 mol%)가 높은 분포로 함유되어 있었다. 48시간의 효소 반응 후 DAG의 지방산 조성은 DHA(13.3mol%)와 linoleic acid(34.3 mol%), palmitic acid(20.0 mol%), oleic acid(13.2mol%), myristic acid(5.8mol%) 및 EPA(5.5 mol%) 등으로 조사되었고, MAG의 경우는 DHA(8.6mol%)와 linoleic acid(34.0mol%), palmitic acid(23.9mol%), oleic acid (15.1mol%) 및 EPA(4.1mol%) 등으로 분석되었다. 효소적 glycerolysis 반응 완료(48hr) 후 총 지질 내 약 60%의 DAG 및 MAG 함유하는 기능성 유지는 19.2area%의 1,3-DAG와 22.2 area%의 1,2-DAG, 16.0area%의 MAG 및 TAG(42.3area%), FFA(0.2area%)와 같은 중성 지질로 구성되어 있었다. 이러한 기능성 유지의 요오드가는 208.8, 비누화가는 179.6으로 측정되었으며, 산가(조류유, 대두유; <0.3)는 3.4이하를 나타내어 합성 중 생성, 잔류 가능한 유리 지방산 제거(산가 저하)를 위한 정제 과정이 필요할 것으로 사료된다. 또한, 기능성 유지는 Hunter $L^*(+/-,\;lightness/darkness;\;77.9),\;a^*(+/-,\;redness/greenness;\;15.9)$$b^*(+/-,\;yellowness/blueness;\;54.6)$와 같은 색도를 나타내었다.

Keywords

References

  1. Maki KC, Davidson MH, Tsushima R, Matsuo N, Tokimitsu I, Umporowicz DN, Dicklin MR, Foster GS, Ingram KA, Anderson BD, Frost SD, Bell M. Consumption of diacylglycerol oil as part of a reduced-energy diet enhances loss of body weight and fat in comparison with consumption of a triacylglycerol control oil. Am. J. Clin. Nutr. 76: 1230-1236 (2002) https://doi.org/10.1093/ajcn/76.6.1230
  2. Watanabe T, Sugiura M, Sato M, Yamada N, Nakanishi K. Diacylglycerol production in a packed bed bioreactor. Process Biochem. 40: 637-643 (2005) https://doi.org/10.1016/j.procbio.2004.01.046
  3. Park RK, Lee KT. Synthesis and characterization of mono- and diacylglycerol enriched functional oil by enzymatic glycerolysis of corn oil. Korean J. Food Sci. Technol. 36: 211-216 (2004)
  4. Rosu R, Yasui M, Iwasaki Y, Yamane T. Enzymatic synthesis of symmetrical 1,3-diacylglycerols by direct esterification of glycerol in solvent-free system. J. Am. Oil Chem. Soc. 76: 839-843 (1999) https://doi.org/10.1007/s11746-999-0074-7
  5. Noureddini H, Harmeier SE. Enzymatic glycerolysis of soybean oil. J. Am. Oil Chem. Soc. 75: 1359-1365 (1998) https://doi.org/10.1007/s11746-998-0183-8
  6. Lee HA, Yoo IJ, Lee BH. Research and development trends on omega-3 fatty acid fortified foodstuffs. J. Korean Soc. Food Sci. Nutr. 26: 161-174 (1997)
  7. Horrocks LA, Yeo YK. Health benefits of docosahexaenoic acid (DHA). Pharmacol. Res. 40: 211-225 (1999) https://doi.org/10.1006/phrs.1999.0495
  8. Abril R, Garrett J, Zeller SG, Sander WJ, Mast RW. Safety assessment of DHA-rich microalgae from Schizochytrium sp., V. Target animal safety/toxicity study in growing swine. Regul. Toxicol. Pharmacol. 37: 73-82 (2003) https://doi.org/10.1016/S0273-2300(02)00030-2
  9. Tonon T, Harvey D, Larson TR, Graham IA. Long chain polyunsaturated fatty acid production and partitioning to triacylglycerols in four microalgae. Phytochemistry 61: 15-24 (2002) https://doi.org/10.1016/S0031-9422(02)00201-7
  10. Cho EJ, Lee JH, Lee KT. Optimization of enzymatic synthesis condition of structured lipids by response surface methodology. Korean J. Food Sci. Technol. 36: 531-536 (2004)
  11. A Food Distribution Yearbook. Food Journal, Seoul, Korea. pp. 292-299 (2002)
  12. Yesiloglu Y. Immobilized lipase-catalyzed ethanolysis of sunflower oil. J. Am. Oil Chem. Soc. 81: 157-160 (2004) https://doi.org/10.1007/s11746-004-0874-y
  13. Akoh CC, Min DB. Structured Lipids, pp. 877-908. In: Food Lipids: Chemistry, Nutrition and Biotechnology. Akoh CC, Min DB. (eds). Marcel Dekker Inc., New York, USA (2002)
  14. Shin JA, Lee KT. Lipase-catalyzed synthesis of structured lipids with capric and conjugated linoleic acid in a stirred-batch type reactor. J. Korean Soc. Food Sci. Nutr. 33: 1175-1179 (2004) https://doi.org/10.3746/jkfn.2004.33.7.1175
  15. Alonso L, Fraga MJ, Juarez M. Determination of trans fatty acids and fatty acid profiles in margarines marketed in Spain. J. Am. Oil Chem. Soc. 77: 131-136 (2000) https://doi.org/10.1007/s11746-000-0022-8
  16. Lee KT, Foglia TA. Synthesis, purification, and characterization of structured lipids produced from chicken fat. J. Am. Oil Chem. Soc. 77: 1027-1034(2000) https://doi.org/10.1007/s11746-000-0163-9
  17. Lee JH, Shin JA, Lee JH, Lee KT. Production of lipase-catalyzed structured lipids from safflower oil with conjugated linoleic acid and oxidation studies with rosemary extracts. Food Res. Int. 37: 967-974 (2004) https://doi.org/10.1016/j.foodres.2004.06.005
  18. AOCS. Official Methods and Recommended Practices of the American Oil Chemists' Society. 4th ed. American Oil Chemists' society, Chicago, IL, USA. Ca 5s-40, Cd 1-25, Cd 3-25 (1990)
  19. SAS Institute, Inc. SAS/STAT User's guide. Release 8.01, Statistical Analysis Systems Institute, Cary, NC, USA (2000)
  20. Lee KT, Akoh CC. Immobilized lipase-catalyzed production of structured lipids with eicosapentaenoic acid at specific positions. J. Am. Oil Chem. Soc. 73: 611-615 (1996) https://doi.org/10.1007/BF02518116
  21. Xu X, Fomuso LB, Akoh CC. Synthesis of structured triacylglycerols by lipase-catalyzed acidolysis in a packed bed bioreactor. J. Agric. Food Chem. 48: 3-10 (2000) https://doi.org/10.1021/jf990836p
  22. Willis WM, Marangoni AG. Enzymatic interesterification, pp. 839-875. In: Food Lipids: Chemistry, Nutrition and Biotechnology. Akoh CC, Min DB. (eds). Marcel Dekker lnc., NY, USA (2002)
  23. Yamamoto K, Asakawa H, Tokunaga K, Meguro S, Watanabe H, Tokimitsu I, Yagi N. Effects of diacylglycerol administration on serum triacylglycerol in a patient homozygous for complete lipoprotein lipase deletion. Metab. Clin. Exp. 54: 67-71 (2005) https://doi.org/10.1016/j.metabol.2004.07.013
  24. Insel P, Turner RE, Ross D. Nutrition. Jones and Bartlett Publishers, London, UK. pp. 136-177 (2001)
  25. Lee JH, Jones KC, Lee KT, Kim MR, Foglia TA. High-performance liquid chromatographic seperation of structured lipids produced by interesterification of macadamia oil with tributyrin and tricaprylin. Chromatographia 58: 653-658 (2003)