Evaluation of the Estrogenic and Antioxidant Activity of Some Edible and Medicinal Plants

식용 및 약용자원의 에스트로젠 활성과 항산화능 평가

  • Choi, Sun-Young (Department of Food and Nutrition, Seoul National University) ;
  • Lim, Sun-Hye (Food Function Research Division, Korea Food Research Institute) ;
  • Kim, Ji-Sun (Food Function Research Division, Korea Food Research Institute) ;
  • Ha, Tae-Youl (Food Function Research Division, Korea Food Research Institute) ;
  • Kim, Sung-Ran (Food Function Research Division, Korea Food Research Institute) ;
  • Kang, Kyung-Sun (Department of Veterinary Public Health, Seoul National University) ;
  • Hwang, In-Kyeong (Department of Food and Nutrition, Seoul National University)
  • 최선영 (서울대학교 식품영양학과) ;
  • 임선혜 (한국식품연구원 식품기능연구본부) ;
  • 김지선 (한국식품연구원 식품기능연구본부) ;
  • 하태열 (한국식품연구원 식품기능연구본부) ;
  • 김성란 (한국식품연구원 식품기능연구본부) ;
  • 강경선 (서울대학교 수의학과) ;
  • 황인경 (서울대학교 식품영양학과)
  • Published : 2005.08.31

Abstract

Estrogenic and antioxidant activities of ethanol extracts of 45 edible and medicinal plants were evaluated by ${\beta}-galactosidase$ assay, and DPPH radical scavenging assay, and TBARS inhibition rate, respectively. Total polyphenol contents were in the range of 8.6 (Panax notoginseng Buck F.H. Chen.)-594.7 (Amomum globosum Loureiro) mg/g. Direct correlation between the DPPH radical scavenging activity and polyphenol content $(r^2=0.61)$ was established through simple regression analysis, whereas no correlation was observed between TBARS inhibition rate or ${\beta}-galactosidase$ activity and polyphenol content. Among medicinal plants screened, Glycyrrhiza glabra L. and Rheum undulatum L. showed strong antioxidant and estrogenic activities. Results of this study could be used as fundamental data for selecting potential phytoestrogen candidates.

45종 식용 및 약용식물 에탄을 추출물의 에스트로젠 활성 및 항산화활성을 측정하였고 폴리페놀과 플라보노이드 함량을 측정 비교하였다. 재조합 효모법을 이용하여 에스트로젠 활성을 측정한 결과 감초, 강황, 경포부자, 구아바, 느릅(줄기), 도꾸다미, 백화사설초, 대황, 상백피(중국산), 상황버섯, 석류, 복분자(과육, 씨), 원지, 은행, 초두구, 홍화, 황정이 유의적으로 높은 활성을 나타내었다. 특히, 감초와, 대황은 $100{\mu}g/mL$의 농도에서 1mg/mL 보다 더 높은 활성을 나타내었다. DPPH 라디칼 소거능과 TBARS 생성 억제능 두 가지가 모두 우수한 소재는 감초, 구아바, 느릅, 대황, 복분자, 초두구였다. 총 폴리페놀은 초두구가 594.7mg/g catechin eq.으로 가장 높았으며 삼칠근이 8.6mg/g catechin eq.으로 가장 낮았고, 플라보노이드 함량은 강황이 약 394.9mg/g naringin eq.으로 가장 높았고 황정이 1.7mg/g naringin eq.으로 가장 적었다. 폴리페놀의 함량이 높은 식물의 대부분이 플라보노이드의 함량도 많았다. 시료 추출물의 라디칼 소거 활성과 폴리페놀 함량간에 양의 상관관계를 나타내었으나$(r^2=0.61)$, 지질 과산화 억제능 및 에스트로젠 활성과 폴리페놀 함량 간에는 유의적인 상관성이 적었다. 감초, 대황은 에스트로젠 활성이 높으면서 항산화능이 높았다. 이상의 결과는 파이토에스트로젠 활성을 가진 천연 소재를 선정하는데 기초 자료로 활용될 수 있을 것으로 사료된다.

Keywords

References

  1. Kwon SC. Effects of continuously added oral progestin (medroxyprogesterone acetate) on the levels of serum lipid and lipoprotein during estrogen replacement therapy in postmenopausal women. Korean Soc. Obsterics Gynecol. 41: 2442-2446 (1998)
  2. Ettinger B. Overview of estrogen replacement therapy: a historical perspective. Proc. Soc. Exp. BioI. Med. 217: 2-5 (1998)
  3. Schafer JM, Lee ES, O'Regan RM, Yao K, Jordan VC. Clin. Rapid development of tamoxifen-stimulated mutant p53 breast tumors (T47D) in athymic mice. Cancer Res. 6: 4373-4380 (2000)
  4. Kronenberg F, Fugh-Berman A. Complementary and alternative medicine for menopausal symptoms: a review of randomized, controlled trials. Ann. Int. Med. 137: 805-813 (2002) https://doi.org/10.7326/0003-4819-137-10-200211190-00009
  5. Marston A, Hostettmann K. Biological and chemical evaluation of plant extracts and subsequent isolation strategy. pp. 67-80. In: Bioassay Methods in Natural Product Research and Drug Development. Bohlin L, Bruhn JG (eds). Kluwer Academic Publishers, Dordrecht, the Netherlands (1999)
  6. Farnsworth NR, Bingel AS, Cordell GA, Crane FA, Fong HS. Potential value of plant as sources of new antifertility agents II. J. Pharmcol. Sci. 64: 717-754 (1975) https://doi.org/10.1002/jps.2600640504
  7. Mazur W, Adlercreutz H. Overview of naturally occuring endocrine-active substances in the human diet in relation to human health. Nutrition 16: 654-687 (2000) https://doi.org/10.1016/S0899-9007(00)00333-6
  8. Mazur W, Duke JA, Wahala K, Rasku S, Adlercreutz H. Isoflavonoids and lignans in legumes: Nutritional and health aspects in humans. J. Nutr. Biochem. 6: 193-200 (1998)
  9. Tham DM, Gardner CD, Haskell WL. Potential health benefits of dietary phytoestrogens: A review of the clinical, epidemiological, and mechanistic evidence. J. Clin. Endocrinol. Metabol. 83: 2223-2235 (1998) https://doi.org/10.1210/jc.83.7.2223
  10. Franke AA, Custer LJ, Cerna CM, Narala KK. Quantitation of phytoestrogens in legumes by HPLC. J. Agric. Food Chem. 42: 1905-1913 (1994) https://doi.org/10.1021/jf00045a015
  11. Wang X, Wu J, Chiba H, Umegaki K, Yamada K, Ishimi Y. Puerariae radix prevents bone loss in ovariectomized mice. J. Bone Miner. Metab. 21: 268-275 (2003) https://doi.org/10.1007/s00774-003-0420-z
  12. Wang JF, Guo YX, Niu JZ, Liu J, Wang LQ, Li PH. Effects of Radix Puerariae flavones on liver lipid metabolism in ovariectomized rats. World J. Gastroenterol. 10: 1967-1970 (2004) https://doi.org/10.3748/wjg.v10.i13.1967
  13. Jeon SM, Han J, Lee HJ, Lee IK, Moon KD, Choi MS. The effects of Korean safflower (Carthamus tinctorious L.) seed powder supplementation diet on bone metabolism indices in rats during the recovery of rib fracture. Korean Nutr. Soc. 31: 1049-1056 (1998)
  14. Choi YS, Cho SH. Effects of defatted safflower seed powder on intestinal physiology and fecal short-chain fatty acids in ovariectomized female rats fed high cholesterol diets. J. Korean Soc. Food Sci. Nutr. 30: 528-534 (2001)
  15. Cho SH, Lee HR, Kim TH, Choi SW, Lee WJ, Choi Y. Effects of defatted safflower seed extract and phenolic compounds in diet on plasma and liver lipid in ovariectomized rats fed high-cholesterol diets. J. Nutr. Sci. Vitaminol. 50: 32-37 (2004) https://doi.org/10.3177/jnsv.50.32
  16. Kim SJ, Park C, Kim HG, Shin WC, Choe SY, A study on the estrogenicity of Korean arrowroot (Pueraria thunbergiana). J. Korean Soc. Food Sci. Nutr. 33: 16-21 (2004) https://doi.org/10.3746/jkfn.2004.33.1.016
  17. Soto AM, Sonnenschein C, Chung KL, Fernandez MF, Olea N, Serrano FO. The E-screen assay as a tool to identify estrogens: An update on estrogenic environmental pollutants. Environ. Health Perspect. 103: 113-122 (1995) https://doi.org/10.1289/ehp.95103s7113
  18. Park JS, Lee BJ, Kang KS, Tai JH, Cho JJ, Cho MH, Inoue T, Lee YS. Hormonal effects of several chemicals in recombinant yeast, MCF-7 cells and uterotrophic assays in mice. J. Microbiol. Biotechnol. 10: 293-299 (2000)
  19. Gaido KW, Leonard LS, Maness SC, Hall JM, McDonnell DP, Saville B, Safe S. Differential interaction of the methoxychlor metabolite 2,2-bis-(p-hydroxy phenyl) -1,1,1-trichloroethane with estrogen receptors alpha and beta. Endocrinology 140: 5746-5753 (1999) https://doi.org/10.1210/en.140.12.5746
  20. Arcaro KF, Vakharia DD, Yang Y, Gierthy JF. Lack of synergy by mixtures of weakly estrogenic hydroxylated polychlorinated biphenyls and pesticides. Environ. Health Perspect. 106: 1041-1046(1998) https://doi.org/10.2307/3434149
  21. Gaido KW, Leonard LS, Lovell S, Gould JC, Babai D, Protier CJ, McDonnell DP. Evaluation of chemicals with endocrine modulating activity in a yeast based steroid hormone receptor gene transcription assay. Toxicol. Appl. Pharmacol. 143: 205-212 (1997) https://doi.org/10.1006/taap.1996.8069
  22. Blois MS. Antioxidant determination by the use of a stable free radical. Nature 181: 1199-1201 (1958) https://doi.org/10.1038/1811199a0
  23. Ohkawa H, Ohishi N, Yaki K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95: 35-41 (1979)
  24. Singleton VL, Rossi JA, Colorimetry of total phenolics with phosphomolybdenic-phosphotungstic acid. Am. J. Enol. Vitic. 16: 144-158 (1965)
  25. NFRI. Mannuals of Quality Characteristic Analysis for Food Quality Evaluation (2). National Food Research Institute, Tsukuba, Japan. p. 61(1990)
  26. Tamir S, Eizenberg M, Somjen D, Stern N, Shelach R, Kaye A, Vaya J. Estrogenic and antiproliferative properties of glabridin from licorice in human breast cancer cells. Cancer Res. 60: 5704-5709 (2000)
  27. van der Sluis AA, Dekker M, Vererk R, Jongen WMF. An improved, rapid in vitro method to measure antioxidant activity. Application on selected flavonoids and apple juice. J. Agric. Food Chem. 48: 4116-4122 (2000) https://doi.org/10.1021/jf000156i
  28. Sato M, Ramarathnam N, Suzuki Y, Ohkubo T, Takeuchi M, Ochi H. Varietal differences in the phenolic content and superoxide radical scavenging potential of wines from different sources. J. Agric. Food Chem. 44: 37-41 (1996) https://doi.org/10.1021/jf950190a
  29. Bors W, Saran M. Radical scavenging by flavonoid antioxidants. Free Radic. Res. Comm. 2: 289-294 (1987) https://doi.org/10.3109/10715768709065294
  30. Fitzpatrick DF, Hirschfiel SL, Coffey RG. Endothelium-dependent vasorelaxing activity of wine and other grape products. Am. J. Physiol. 265: H774-H778 (1993)
  31. Miksicek RJ. Commonly occuring flavonoids have estrogenic activity. Mol. Pharmcol. 44: 37-43 (1993)
  32. Breinholt V, Larsen JC. Detection of weak estrogenic flavonoids using a recombinant yeast strain and a modified MCF -7 cell proliferation assay. Chem. Res. Toxicol. 11: 622-629 (1998) https://doi.org/10.1021/tx970170y
  33. Collins-Burow BM, Burow ME, Duong BN, McLachlan JA. Estrogenic and antiestrogenic activities of flavonoid phytochemicals through estrogen receptor binding-dependent and -independent mechanisms. Nutr. Cancer 38: 229-244 (2000) https://doi.org/10.1207/S15327914NC382_13
  34. Kim SY, Kim JH, Kim SK, Oh MJ, Jung MY. Antioxidant activities of selected oriental herb extracts. J. Am. Oil. Chem. Soc. 71: 633-640 (1994) https://doi.org/10.1007/BF02540592
  35. Kim EY, Baik IH, Kim JH, Kim SR, Rhyu MR. Screening of the antioxidant activity of some medicinal plants. Korean J. Food Sci. Technol. 36: 333-338 (2004)
  36. Fujimoto N, Kohta R, Kitamura S, Honda H. Estrogenic activity of an antioxidant, nordihydroguaiaretic acid (NDGA). Life Sci. 74: 1417-1425 (2004) https://doi.org/10.1016/j.lfs.2003.08.012
  37. Hollman PCH, v.d. Gaag M, Mengelers MJB, van Trijp JMP, de Vries JHM, Katan MB. Absorption and disposition kinetics of the dietary antioxidant quercetin in man. Free Radic. Biol. Med. 21: 703-707 (1996) https://doi.org/10.1016/0891-5849(96)00129-3
  38. Morito K, Hirose T, Kinjo J, Hirakawa T, Okawa M, Nohara T, Ogawa S, Inoue S, Muramatsu M, Masamune Y. Interaction of phytoestrogens with estrogen receptors ${\alpha}\;and\;{\beta}$. Biol, Pharmcol. Bull. 24: 351-356 (2001) https://doi.org/10.1248/bpb.24.351
  39. Walle T. Absorption and metabolism of flavonoids. Free Radic. BioI. Med. 36: 829-837 (2004) https://doi.org/10.1016/j.freeradbiomed.2004.01.002