Trichoderma reesei KCTC 6952로부터 분비된 ${\beta}$-glucosidase의 특성

Characteristics of ${\beta}$-Glucosidase Secreted by Trichoderma reesei KCTC 6952

  • 박성희 (중앙대학교 식품공학과) ;
  • 오민정 (중앙대학교 식품공학과) ;
  • 이정래 ((주)렉스진바이오텍) ;
  • 권석형 ((주)렉스진바이오텍, 중앙대학교 약학대학) ;
  • 최영욱 (중앙대학교 약학대학) ;
  • 이민원 (중앙대학교 약학대학) ;
  • 김근성 (중앙대학교 식품공학과)
  • Park, Sung-Hee (Department of Food Science and Technology, Chung-Ang University) ;
  • Oh, Min-Jung (Department of Food Science and Technology, Chung-Ang University) ;
  • Lee, Jeong-Rai (Rexgene Biotech Co. Ltd.) ;
  • Kwon, Suk-Hyung (Rexgene Biotech Co. Ltd., College of Pharmacy, Chung-Ang University) ;
  • Choi, Young-Wook (College of Pharmacy, Chung-Ang University) ;
  • Lee, Min-Won (College of Pharmacy, Chung-Ang University) ;
  • Kim, Keun-Sung (Department of Food Science and Technology, Chung-Ang University)
  • 발행 : 2005.06.30

초록

Trichoderma reesei KCTC 6952는 고분자 섬유소인 cellulose를 분해하는데 관여하는 3종류의 효소로 구성된 cellulase system을 보유하고 있다. 그 중 ${\beta}$-glucosidase는 glucose를 함유한 glycoside 유도체들로부터 glucose를 효율적으로 유리할 수 있는 것으로 알려져 있다. 본 연구에서는 변형된 Mandels의 배지를 사용하여 T. reesei KCTC 6952를 배양하면서 배지로 분비된 ${\beta}$-glucosidase를 조효소액으로 회수하여 조효소액내의 ${\beta}$-glucosidase 활성을 측정하고, 또한 효소활성이 온도와 pH에 대하여 어느 정도 안정한 지를 조사하였다. 그 결과 배양 4일째에 ${\beta}$-glucosidase의 효소활성이 최고(1.33 unit/mL)에 도달하였으며, 조효소액내의 ${\beta}$-glucosidase의 최적 반응 조건은 pH 5과 $70^{\circ}C$에서 10분간 반응하는 것이었으며, 그리고 효소의 안정성을 실험한 결과에 의하면 pH 4-5의 범위에서, $50^{\circ}C$ 이하에서는 안정적이었다. 그러므로 결론적으로 본 연구를 위하여 선택된 ${\beta}$-glucosidase 조효소액은 비교적 높은 온도와 넓은 pH범위에서 촉매반응을 일으킬 수 있었다.

Trichoderma reesei KCTC 6952 possesses cellulase system consisting of three enzymatic components necessary to synergistically hydrolyze crystalline cellulose, among which ${\beta}$-glucosidase effectively releases glucose from glycoside derivatives. ${\beta}$-Glucosidase of T. reesei KCTC 6952 grown in modified Mandels' medium showed maximum activity(1.33 unit/mL) 4 days after initiation of growth. Optimal reaction conditions of the enzyme were 50 mM sodium acetate (pH 5) at $70^{\circ}C$ for 10 min. Enzymatic activities stabilized below $50^{\circ}C$ at pH range of 4-5. Results show ${\beta}$-glucosidase exerted its catalytic activities at relatively high temperatures and broad pH range.

키워드

참고문헌

  1. Son YJ, Sul OJ, Chung DK, Han IS, Choi YJ, Jeong CS. Isolation and characterization of Trichoderma sp. C-4 producing cellu-lases. Korean J. Appl. Microbiol. Biotechndl. 4: 346-353 (1997)
  2. Kim JH, Lee BR, Moo YP. Overproduction and secretion of $\beta$-glucosidase in Bacillus subtilis. J. Microbiol. Biotechnol. 8: 141-145 (1998)
  3. Kim DW, Kim GS, Koh SD, Whang HS, Chung CH, Kim TS. Sugar production mechanism by the enzymatic hydrolysis of cellulosic materials: Adsorption of cellulase components from Trichoderma viride on cellulose. HWAHAK KONGHAK. 30: 99-105(1992)
  4. Park JN, Kim HO, Shin DJ, Kim HJ, Lee HB, Chun SB, Bai S. Cloning of a Paenibacillus sp. endo-$\beta$-1,4-glucanase gene and its coexpression with the Endomyces flbuliger $\beta$-glucosidase gene in Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 11: 685-692 (2001)
  5. Kim DM, Lee KH. Development of extracellular $\beta$-glucosidase producing strains by intergeneric protoblast-fusion between Bacillus pumilus and Cellulomonas fimi. Korean J. Appl. Microbiol. Biotech. 2:115-120(1990)
  6. Tamas J, Krisztina K, Zsolt S, Kati R. Production of $\beta$-glucosidase in mixed culture of Aspergillus niger BKMF 1305 and Trichoderma reesei RUT C30. Food Technol. Biotechnol. 41: 49-53 (2003)
  7. Lee HS, Min KH, Bae M. Biosynthetic regulation and enzymatic properties of $\beta$-glucosidase from Cellulomonas sp. CS 1-1. Korean J. Appl. Microbiol. Bioeng. 2:119-125 (1988)
  8. Sung CK, Lee SW, Park JR, Moon IS. Purification and characterization of $\beta$-glucosidase from Aspergillus niger SFN-416. Korean J. Appl. Microbiol. Biotechnol. 25: 44-50 (1997)
  9. Kim JH, Nam DH. Purification and properties of $\beta$-glucosidase from Sporotrichum cellulophilum. Korean J. Appl. Microbiol. Bioeng. 12:21-26(1984)
  10. Min HK, Yi HK, Moon JW, Kang KH. Purification and properties of $\alpha$-glucosidase from Pediococcus halophilus. Korean J. Appl. Microbiol. Biotechnol. 20: 143-149 (1992)
  11. Jeon KS, Geon EJ, Hwang IK. Assay of $\beta$-glucosidase activity of Bifidobacteria and the hydrolysis of isoflavone glycosides by Bifidobacterium sp. Int-57 in soymilk fermentation. J. Microbiol. Biotechnol. 12:8-13(2002)
  12. Kim YW, Chun SS, Chung YC, Roh JS, Sung NK. Enhanced stability of Pseudomonas sp. endo-1,4-$\beta$-glucanase and $\beta$-1,4-glucosidase gene. Korean J. Appl. Microbiol. Biotechnol. 23: 659-664(1995)
  13. Kim YW, Chun SS, Kim SJ, Chung YC, Sung NK. Cloning and expression of $\beta$-1,4-glucosidase gene from Pseudomonas sp. in Escherichia coli and Bacillus subtilis. Korean J. Appl. Microbiol. Biotechnol. 21: 113-118(1993)
  14. Robinson M, Riov J, Sharon A. Indole-3-acetic acid biosynthesis in Colletotrichum gloeosporioides f. sp. aeschynomene. Appl. Environ. Microbiol. 64: 5030-5032 (1998)
  15. Wei DL, Kohtaro K, Shoji U, Lin TH. Purification and characterization of an extracellular $\beta$-glucosidase from the wood-grown fungus Xylaria regalis. Current Microbiol. 33: 297-301 (1996) https://doi.org/10.1007/s002849900117
  16. Oh SH, Kim MS, So S, Suh HJ. Studies on the production of cellulase by Trichoderma sp. SO-571 and the enzyme treatment for cellulosic fabrics. Korean J. Microbiol. Biotechnol. 31: 42-45 (2003)
  17. Chun SB, Kim DH, Kim KH, Chung KC. Purification and characterization of $\beta$-glucosidase from Penicillium verruculosum. J. Microbiol. Biotechnol. 1:188-196(1991)
  18. Park SK, Moon IS, Choi OJ, Sung NK. Isolation of ${\beta}-glucosidase-producing$ fungi and properties of its crude enzyme. Korean J. Appl. Microbiol. Biotechnol. 21: 440-445 (1993)
  19. Kurosawa K, Hosoguchi M, Hariantono J, Sasaki H, Takao S. Degradation of tough materials by cellulase from Corticium rolfsii. Agric. Biol. Chem. 53: 931-937 (1989) https://doi.org/10.1271/bbb1961.53.931