Characteristics of ${\beta}$-Glucosidase Secreted by Trichoderma reesei KCTC 6952

Trichoderma reesei KCTC 6952로부터 분비된 ${\beta}$-glucosidase의 특성

  • Park, Sung-Hee (Department of Food Science and Technology, Chung-Ang University) ;
  • Oh, Min-Jung (Department of Food Science and Technology, Chung-Ang University) ;
  • Lee, Jeong-Rai (Rexgene Biotech Co. Ltd.) ;
  • Kwon, Suk-Hyung (Rexgene Biotech Co. Ltd., College of Pharmacy, Chung-Ang University) ;
  • Choi, Young-Wook (College of Pharmacy, Chung-Ang University) ;
  • Lee, Min-Won (College of Pharmacy, Chung-Ang University) ;
  • Kim, Keun-Sung (Department of Food Science and Technology, Chung-Ang University)
  • 박성희 (중앙대학교 식품공학과) ;
  • 오민정 (중앙대학교 식품공학과) ;
  • 이정래 ((주)렉스진바이오텍) ;
  • 권석형 ((주)렉스진바이오텍, 중앙대학교 약학대학) ;
  • 최영욱 (중앙대학교 약학대학) ;
  • 이민원 (중앙대학교 약학대학) ;
  • 김근성 (중앙대학교 식품공학과)
  • Published : 2005.06.30

Abstract

Trichoderma reesei KCTC 6952 possesses cellulase system consisting of three enzymatic components necessary to synergistically hydrolyze crystalline cellulose, among which ${\beta}$-glucosidase effectively releases glucose from glycoside derivatives. ${\beta}$-Glucosidase of T. reesei KCTC 6952 grown in modified Mandels' medium showed maximum activity(1.33 unit/mL) 4 days after initiation of growth. Optimal reaction conditions of the enzyme were 50 mM sodium acetate (pH 5) at $70^{\circ}C$ for 10 min. Enzymatic activities stabilized below $50^{\circ}C$ at pH range of 4-5. Results show ${\beta}$-glucosidase exerted its catalytic activities at relatively high temperatures and broad pH range.

Trichoderma reesei KCTC 6952는 고분자 섬유소인 cellulose를 분해하는데 관여하는 3종류의 효소로 구성된 cellulase system을 보유하고 있다. 그 중 ${\beta}$-glucosidase는 glucose를 함유한 glycoside 유도체들로부터 glucose를 효율적으로 유리할 수 있는 것으로 알려져 있다. 본 연구에서는 변형된 Mandels의 배지를 사용하여 T. reesei KCTC 6952를 배양하면서 배지로 분비된 ${\beta}$-glucosidase를 조효소액으로 회수하여 조효소액내의 ${\beta}$-glucosidase 활성을 측정하고, 또한 효소활성이 온도와 pH에 대하여 어느 정도 안정한 지를 조사하였다. 그 결과 배양 4일째에 ${\beta}$-glucosidase의 효소활성이 최고(1.33 unit/mL)에 도달하였으며, 조효소액내의 ${\beta}$-glucosidase의 최적 반응 조건은 pH 5과 $70^{\circ}C$에서 10분간 반응하는 것이었으며, 그리고 효소의 안정성을 실험한 결과에 의하면 pH 4-5의 범위에서, $50^{\circ}C$ 이하에서는 안정적이었다. 그러므로 결론적으로 본 연구를 위하여 선택된 ${\beta}$-glucosidase 조효소액은 비교적 높은 온도와 넓은 pH범위에서 촉매반응을 일으킬 수 있었다.

Keywords

References

  1. Son YJ, Sul OJ, Chung DK, Han IS, Choi YJ, Jeong CS. Isolation and characterization of Trichoderma sp. C-4 producing cellu-lases. Korean J. Appl. Microbiol. Biotechndl. 4: 346-353 (1997)
  2. Kim JH, Lee BR, Moo YP. Overproduction and secretion of $\beta$-glucosidase in Bacillus subtilis. J. Microbiol. Biotechnol. 8: 141-145 (1998)
  3. Kim DW, Kim GS, Koh SD, Whang HS, Chung CH, Kim TS. Sugar production mechanism by the enzymatic hydrolysis of cellulosic materials: Adsorption of cellulase components from Trichoderma viride on cellulose. HWAHAK KONGHAK. 30: 99-105(1992)
  4. Park JN, Kim HO, Shin DJ, Kim HJ, Lee HB, Chun SB, Bai S. Cloning of a Paenibacillus sp. endo-$\beta$-1,4-glucanase gene and its coexpression with the Endomyces flbuliger $\beta$-glucosidase gene in Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 11: 685-692 (2001)
  5. Kim DM, Lee KH. Development of extracellular $\beta$-glucosidase producing strains by intergeneric protoblast-fusion between Bacillus pumilus and Cellulomonas fimi. Korean J. Appl. Microbiol. Biotech. 2:115-120(1990)
  6. Tamas J, Krisztina K, Zsolt S, Kati R. Production of $\beta$-glucosidase in mixed culture of Aspergillus niger BKMF 1305 and Trichoderma reesei RUT C30. Food Technol. Biotechnol. 41: 49-53 (2003)
  7. Lee HS, Min KH, Bae M. Biosynthetic regulation and enzymatic properties of $\beta$-glucosidase from Cellulomonas sp. CS 1-1. Korean J. Appl. Microbiol. Bioeng. 2:119-125 (1988)
  8. Sung CK, Lee SW, Park JR, Moon IS. Purification and characterization of $\beta$-glucosidase from Aspergillus niger SFN-416. Korean J. Appl. Microbiol. Biotechnol. 25: 44-50 (1997)
  9. Kim JH, Nam DH. Purification and properties of $\beta$-glucosidase from Sporotrichum cellulophilum. Korean J. Appl. Microbiol. Bioeng. 12:21-26(1984)
  10. Min HK, Yi HK, Moon JW, Kang KH. Purification and properties of $\alpha$-glucosidase from Pediococcus halophilus. Korean J. Appl. Microbiol. Biotechnol. 20: 143-149 (1992)
  11. Jeon KS, Geon EJ, Hwang IK. Assay of $\beta$-glucosidase activity of Bifidobacteria and the hydrolysis of isoflavone glycosides by Bifidobacterium sp. Int-57 in soymilk fermentation. J. Microbiol. Biotechnol. 12:8-13(2002)
  12. Kim YW, Chun SS, Chung YC, Roh JS, Sung NK. Enhanced stability of Pseudomonas sp. endo-1,4-$\beta$-glucanase and $\beta$-1,4-glucosidase gene. Korean J. Appl. Microbiol. Biotechnol. 23: 659-664(1995)
  13. Kim YW, Chun SS, Kim SJ, Chung YC, Sung NK. Cloning and expression of $\beta$-1,4-glucosidase gene from Pseudomonas sp. in Escherichia coli and Bacillus subtilis. Korean J. Appl. Microbiol. Biotechnol. 21: 113-118(1993)
  14. Robinson M, Riov J, Sharon A. Indole-3-acetic acid biosynthesis in Colletotrichum gloeosporioides f. sp. aeschynomene. Appl. Environ. Microbiol. 64: 5030-5032 (1998)
  15. Wei DL, Kohtaro K, Shoji U, Lin TH. Purification and characterization of an extracellular $\beta$-glucosidase from the wood-grown fungus Xylaria regalis. Current Microbiol. 33: 297-301 (1996) https://doi.org/10.1007/s002849900117
  16. Oh SH, Kim MS, So S, Suh HJ. Studies on the production of cellulase by Trichoderma sp. SO-571 and the enzyme treatment for cellulosic fabrics. Korean J. Microbiol. Biotechnol. 31: 42-45 (2003)
  17. Chun SB, Kim DH, Kim KH, Chung KC. Purification and characterization of $\beta$-glucosidase from Penicillium verruculosum. J. Microbiol. Biotechnol. 1:188-196(1991)
  18. Park SK, Moon IS, Choi OJ, Sung NK. Isolation of ${\beta}-glucosidase-producing$ fungi and properties of its crude enzyme. Korean J. Appl. Microbiol. Biotechnol. 21: 440-445 (1993)
  19. Kurosawa K, Hosoguchi M, Hariantono J, Sasaki H, Takao S. Degradation of tough materials by cellulase from Corticium rolfsii. Agric. Biol. Chem. 53: 931-937 (1989) https://doi.org/10.1271/bbb1961.53.931