임계 열처리 조건에서 후지 사과의 호흡 및 품질 특성

Respiratory Characteristics and Quality of Fuji Apple Treated with Mild Hot Water at Critical Conditions

  • 발행 : 2005.06.30

초록

중온 열처리에 의한 후지 사과의 품질 개선을 위하여 임계 열처리 조건을 설정하였고, 임계 조건에서의 호흡 및 품질 특성을 조사하였다. 후지 사과의 온도에 따른 임계시간은 $40^{\circ}C$에서 180분, $45^{\circ}C$에서 60분, $50^{\circ}C$에서 25분, $55^{\circ}C$에서 3분, $60^{\circ}C$에서 1분, $65^{\circ}C$에서 20초였다. 호흡 특성에 대한 연구로 열처리 시 사과 내부의 가스 조성변화를 조사한 결과, 탄산가스 농도는 40, 45 및 $50^{\circ}C$의 경우 처리에 따라 급격한 증가 경향을 보인 후 저장 중 다시 감소하였으며, 반면 55, 60 및 $65^{\circ}C$ 처리에서는 처리직후부터 7일 후 까지 큰 변화를 나타내지 않았다. 열처리 사과의 산소가스 농도는 탄산가스 농도와 반대 경향을 나타내었다. 에틸렌 농도는 40, 45 및 $50^{\circ}C$에서 열처리한 사과의 경우 처리 직후 그 농도가 급격히 상승하였다가 처리1일 후부터 대조구보다 낮은 값을 나타내었다. 경도는 처리 7일째 $45^{\circ}C$$50^{\circ}C$에서 처리한 사과의 경우 대조구보다 각각 6.42%와 10.53%의 높은 값을 나타내었다.

Respiratory characteristics and quality of Fuji apple were investigated at critical conditions for dipping treatment in mild hot water ($40-65^^{\circ}C$) to extend freshness. Dipping treatment conditions under which no damages occurred in peel and flesh of apples stored at $0^{\circ}C$ for 1 month after treatment were: 180 min at $40^{\circ}C$, 60 min at $45^{\circ}C$, 45 min at $50^{\circ}C$, 3 min at $55^{\circ}C$, 1 min at $60^{\circ}C$, and 20 sec at $65^{\circ}C$. Internal carbon dioxide concentrations of apples drastically increased immediately after treatments at 40, 45, and $50^{\circ}C$, then decreased to normal level 1 day after treatment at $0^{\circ}C$. Although internal oxygen concentration of apples showed reversed trend to internal carbon dioxide, no significant differences were observed in concentrations of carbon dioxide and oxygen during storage after treatment of apples at 55, 60, and $65^{\circ}C$. Concentration of internal ethylene of apples treated at 40, 45, and $50^{\circ}C$ increased, similarly to that of carbon dioxide upon heat treatment, then, during storage, decreased to below levels of control and apples treated at 55, 60, and $65^{\circ}C$. Firmness of apples treated at 45 and $50^{\circ}C$ were 6.42 and 10.53% higher than that of control at $0^{\circ}C$ after 7 days after treatment.

키워드

참고문헌

  1. Lee SK. Postharvest physiology of horticultural crops. Sungkyunsa, Seoul, Korea, pp. 103-151 (1996)
  2. Pre-Aymard C, Weksler A, Lurie S. Responses of 'Anna', a rapidly ripening summer apple, to 1-methylcyclopropene. Postharvest Biol. Technol. 27: 163-170 (2003) https://doi.org/10.1016/S0925-5214(02)00069-8
  3. Fan X, Blankenship SM, Mattheis JP. 1-Methylcyclopropene inhibits apple ripening. J. Am. Soc. Hortic. Sci. 124: 690-695 (1999)
  4. Mizutani F, Golam Rabbany ABM, Akiyoshi H. Inhibition of ethylene production and 1-aminocyclopropane-1-carboxylate oxidase activity by tropolones. Phytochem. 48: 31 -34 (1998) https://doi.org/10.1016/S0031-9422(97)01093-5
  5. Gorny JR, Kader AA. Regulation of ethylene biosynthesis in climacteric apple fruits by elevated $CO_2$, and reduced $O_2$, atmospheres. Postharvest Biol. Technol. 9:311-323 (1996) https://doi.org/10.1016/S0925-5214(96)00040-3
  6. Schirra M, D'hallewin G, Ben-Yehoshua S, Fallik E. Host-pathogen interactions modulated by heat treatment. Postharvest Biol. Technol. 21: 71-85 (2000) https://doi.org/10.1016/S0925-5214(00)00166-6
  7. Leverentz B, Janisiewicz WJ, Conway WS, Saftner RA, Fuchs Y, Sams CE, Camp MJ. Combining yeasts or a bacterial biocontrol agent and heat treatment to reduce postharvest decay of 'Gala' apples. Postharvest Biol. Technol. 21: 87-94 (2000) https://doi.org/10.1016/S0925-5214(00)00167-8
  8. Ferguson IB, Ben-Yehoshua S, Mitcham EJ, McDonald RE, Lurie S. Postharvest heat treatments: Introduction and workshop summary. Postharvest Biol. Technol. 21:1-6 (2000) https://doi.org/10.1016/S0925-5214(00)00160-5
  9. Dentener PR, Alexander SM, Lester PJ, Petry RJ, Maindonald JH, Mcdonald RM. Hot air treatment for disinfestation of light-brown apple moth and longtailed mealy bug on persimmons. Postharvest Biol. Technol. 8: 143-152 (1996) https://doi.org/10.1016/0925-5214(95)00068-2
  10. Fallik E. Prestorage hot water treatments : immersion, rinsing and brushing. Postharvest Biol. Technol. 32: 125-134 (2004) https://doi.org/10.1016/j.postharvbio.2003.10.005
  11. Smith JK, Lay YM. Response of 'Royal Gala' apples to hot water treatment for insect control. Postharvest Biol. Technol. 19: 111-122(2000) https://doi.org/10.1016/S0925-5214(00)00088-0
  12. Lurie S, Nussunovitch A. Compression characteristics, firmness and texture perception of heat treated and unheated apples. Intl. J. Food Sci. Technol. 31:1-5 (1996) https://doi.org/10.1111/j.1365-2621.1996.18-313.x
  13. Lurie S, Klein JD. Prestorage heating of apple fruit for enhanced postharvest quality: interaction of time and temperature. Hort-Science. 27: 326-328 (1992)
  14. Fallik E, Sharon Tuvia-Alkalai, Feng X, Lurie S. Ripening characterization and decay development of stored apples after a short pre-storage hot water rinsing and brushing. Innovative Food Sci. Emerging Technol. 2: 127-132 (2001) https://doi.org/10.1016/S1466-8564(01)00032-7
  15. Kim DM, Smith NL, Lee CY. Apple cultivar variations in response to heat treatment and minimal processing. J. Food Sci. 58: 1111-1114(1993) https://doi.org/10.1111/j.1365-2621.1993.tb06126.x
  16. Bourne MC, Moyer JC. The extrusion principle in texture measurement of fresh peas. Food Technol. 22: 1013-1018 (1968)
  17. Lurie S, Klein JD. Heat treatment of ripening apples: Differential effects on physiology and biochemistry. Physiologia Plantarum 78: 181-186(1990) https://doi.org/10.1111/j.1399-3054.1990.tb02078.x
  18. Lurie S, Klein JD. Control of apple ripening by high temperatures. Israel J. Botany. 40: 260-261 (1991)
  19. Atta A, Mordy A. Effect of high temperature on ethylene biosynthesis by tomato fruit. Postharvest Biol. Technol. 2: 19-24 (1992) https://doi.org/10.1016/0925-5214(92)90023-I
  20. Ben-Shalom N, Hanzon J, Lurie S, Klein JD. A postharvest heat treatment inhibits cell wall degradation in apples during storage. Phytochem. 34: 955-958 (1993) https://doi.org/10.1016/S0031-9422(00)90693-9