추출조건에 따른 귀리 추출물의 면역활성

Immunomodulatory Activities of Oat Bran Extracts with Different Extraction Conditions

  • Park, Hee-Joeng (Department of Food Science and Technology, Chungbuk National University) ;
  • Kim, Yun-Bae (College of Veterinary Medicine, Chungbuk National University) ;
  • Kang, Tae-Su (Department of Food Science and Biotechnology, Chungbuk Provincial University) ;
  • Jung, Ick-Soo (Technical Research Institute, Bolak Company Limited) ;
  • Kim, Kwang-Yup (Department of Food Science and Technology, Chungbuk National University) ;
  • Jeong, Heon-Sang (Department of Food Science and Technology, Chungbuk National University)
  • 발행 : 2005.02.28

초록

추출조건에 따른 귀리의 crude ${\beta}$-glucan에 대한 면역증진효과을 살펴보기 위해 추출온도, 에탄올 농도 및 pH를 달리하면서 얻은 ${\beta}$-glucan 분획 중 in vitro 실험에서 항암성이 우수하게 나타난 5개 분획인 A분획 ($55^{\circ}C,\;5%,\;pH\;6$) B분획($45^{\circ}C,\;15%,\;pH\;6$), C분획 ($50^{\circ}C,\;20%,\;pH\;7$), D분획 ($50^{\circ}C,\;0%,\;pH\;7$) 및 E 분획($50^{\circ}C,\;10%,\;pH\;9$)를 대상으로 복강 큰 포식세포의 nitric oxide 생성능과 경구투여 후 혈액중의 carbon 탐식효율을 조사하였다. In vitro 실험에서 ${\beta}$-glucan을 $10{\sim}1,000{\mu}g/mL$ 범위에서 단독으로 또는 $IFN-{\gamma}$와 병행 처리했을 때 모두 대식 세포의 nitric oxide 생성량은 처리 농도에 비례하여 증가하였다. 단독 처리시에는 고용량일 때($1,000{\mu}g/mL$) 모든 분획에서 nitric oxide 생성량이 유의적으로 증가하였다. $IFN-{\gamma}$와 병행 처리시에는 C분획을 제외한 모든 분획의 고농도 처리구에서 유의적으로 증가하였는데, 특히 E분획은 $100{\mu}g/mL$의 낮은 농도에서도 효율적인 증가를 보였다. In vivo 실험에서 100mg/kg의 ${\beta}$-glucan 분획을 7일간 경구투여한 후 carbon 탐식효율을 조사한 결과 B, D 및 E 분획에서 유의적인 효과를 나타내었다. 이상의 결과를 종합해볼 때, ${\beta}$-glucan은 고용량일 때 직접적으로 또는 $IFN-{\gamma}$ 존재시에는 저용량에서도 복강 큰 포식세로를 활성화시킬 뿐 아니라, 탐식효율도 높임으로써 면역기능을 증진 시키는 것으로 나타났고, 그 효과는 crude ${\beta}$-glucan의 추출조건에 따라 달라지는 것을 알 수 있었다.

Immunomodulatory activities of crude ${\beta}$-glucans extracted from oat bran under different conditions, fractions A ($55^{\circ}C,\;5%,\;pH\;6$), B ($45^{\circ}C,\;15%,\;pH\;6$), C ($50^{\circ}C,\;20%,\;pH\;7$), D ($50^{\circ}C,\;0%,\;pH\;7$), and E ($50^{\circ}C,\;10%,\;pH\;9$) were investigated. All crude ${\beta}$-glucan fractions stimulated macrophages, producing nitric oxide dose-dependently, and, efficiently promoted nitric oxide production in presence of IFN-${\gamma}$. Except for fraction C, in vivo test indicated fractions B, D, and E (100 mg/kg) substantially enhanced carbon-phagocytic indices of blood macrophages by oral administration of crude ${\beta}$glucan for 7 days prior to carbon injection. These immunomodulatory effects could be determined with extraction conditions of crude ${\beta}$-glucan.

키워드

참고문헌

  1. Macrae R, Robinson R, Sadler MJ. Encyclopedia of Food Science, Food Technology and Nutrition. Academic Press Inc., San Diego, CA, USA. pp. 3319-3322 (1993)
  2. Morris DL. Lichenin and araban in oats (Avena sativa). J. Biol. Chem. 142: 881-891 (1942)
  3. Vachon C, Jones JD, Wood PJ, Savoie L. Concentration effects of soluble dietary fibers on postprandial glucose and insulin in the rat. Can. J. Pharmacol. 66: 801-806 (1988) https://doi.org/10.1139/y88-127
  4. Aman P, Graham H. Analysis of total and insoluble mixed-linked $(1{\rightarrow}3),(1{\rightarrow}4)-\beta$-D-glucans in barley and oats. J. Agric. Food Chem. 35: 704-709 (1987) https://doi.org/10.1021/jf00077a016
  5. Anderson JW, Story L, Sieling B, Sieling WJL, Petro MS, Story J. Hypocholesterolemic effects of oat bran or bean intake for hypercholesterolemic men. Am. J. Clin. Nutr. 40: 1146-1155 (1984)
  6. Anderson JW. Dietary fiber and diabetics. In: Medical Aspects of Dietary Fibre. Spiller GA, Kay RM (eds). Plenum Medical, New York, NY, USA (1980)
  7. Vahouny GV, Kritchevsky D. Dietary Fiber. Basic and Clinical Aspects. Plenum Press, New York, USA (1986)
  8. Yun AH, Estrada A. Kessel AV, Gajadhar AV, Redmond MJ, Laarveld B.$\beta-(1{\rightarrow}3,\;1{\rightarrow}4)$ Oat glucan enhances resistance to Eimeria vermiformis infection in immunosuppressed mice. Int. J. Parasitol. 27: 329-337 (1997) https://doi.org/10.1016/S0020-7519(96)00178-6
  9. Yun AH, Kessel AV, Park BC, Laarveld B. $\beta$-Glucan, extracted from oat, enhances diseases resistance against bacterial and parasitic infections. Immunol. Med. Microbiol. 35: 67-73 (2003) https://doi.org/10.1016/S0928-8244(02)00460-1
  10. Estrada A, Yun CH, Kessel AV, Li B, Huuta S, Laarveld B. Immunomodulatory activities of oat $\beta$-glucan in vitro and vivo. Microbiol. Immunol. 41: 991-998 (1997)
  11. Ohno N, Furukawa M, Miura NN, Adachi Y, Motoi M, Yadomae T. Antitumor $\beta$-glucan from cultured fruit body of Agaricus blazei, Biol. Pharm. Bull. 24: 820-828 (2001) https://doi.org/10.1248/bpb.24.820
  12. Ooi VEC, Liu F. Immunomodulation and anti-cancer activity of polysaccharide protein complexs. Current Med. Chem. 7: 715-729 (2000) https://doi.org/10.2174/0929867003374705
  13. Hashimoto T, Ohno N, Adachi Y, Yadomae T. Enhanced production of inducible nitric oxide synthase by $\beta$-glucan in mice. FEMS Immunol. Microbiol. 19: 131-135 (1997) https://doi.org/10.1016/S0928-8244(97)00078-3
  14. Woodward JR, Phillips DR. Fincher GB. Watersoluble $(1{\rightarrow}3,\;1{\rightarrow}4)-\beta$-D-glucans from barley (Hordeum vulgare) endosperm. IV Comparison of 40 and 65 soluble fractions. Carbohydr. Polym. 8: 85-97 (1988) https://doi.org/10.1016/0144-8617(88)90013-6
  15. Izydorczyk MS, Biliaderist CG, Macri LJ, Macgregor AW. Fractionation of oat (1-3),(1-4)-$\beta$-D-glucans and characteristics of the fractions. J. Cereal Sci. 27: 321-325 (1998) https://doi.org/10.1006/jcrs.1997.0166
  16. Jeong HS, Kang TS, Park HJ, Jung IS, Lee HY. Chracteristics of viscosity and component of soluble extract in oats. Food Eng. Prog. 8: 40-46 (2004)
  17. Kang TS, Jeong HS, Park HJ, Lee MY, Kong YJ, Jung IS. Biological activities of oat soluble $\beta$-glucans. Korean J. Food Preserv. 10: 547-553 (2003)
  18. AOAC. Official Methods of Analysis. 15th ed. Association of Official Chemists, VA, USA (1990)
  19. Dawkins NL, Nnanna IA. Studies on oat gum $[(1{\rightarrow}3,\;1{\rightarrow}4)-\beta]$-D-glucan]: composition, molecular weight estimation and rheological properties. Food Hydrocol. 9: 1-7 (1995) https://doi.org/10.1016/S0268-005X(09)80188-4
  20. Jun CD, Choi BM, Lee SY, Kang SS, Kim HM, Chung HT. Nitric oxide inhibits the expression of protein kinase C gene in the murine peritoneal macrophages. Biochem. Biophys. Res. Comm. 204: 105-111 (1994) https://doi.org/10.1006/bbrc.1994.2432
  21. Sakai H, Horinouchi H, Tomiyama K, Ikeda E, Takeoka S, Kobayashi K, Tsuchida E. Hemoglobin-vehicles as oxygen carriers. Influence of phagocytic activity and histopathological changes in reticuloendothelial system. Am. J. Pathol. 159: 1079-1088 (2001) https://doi.org/10.1016/S0002-9440(10)61783-X
  22. Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43: 109-142 (1991)
  23. Nathan CZ. Nitric oxide a secretory product of mamalian cells. FASEB J. 6: 3051-3064 (1992)
  24. Malkki Y, Autio K, Hanninen O, Myllymaki O, Pelkonen K, Suortti T, Torronen R. Oat bran concentrates: physical properties of $\beta$-glucan and hypocholesterolemic effects in rats. Cereal Chem. 69: 647-653 (1992)
  25. Czop JK, Kay J. Isolation and characterization of $\beta$-glucan receptors on human mononuclear phagocytes. J. Exp. Med. 173: 1511-1520 (1991) https://doi.org/10.1084/jem.173.6.1511