A New Acetophenone of Aerial Parts from Rumex aquatica ## Hwanmin Yoon, Jiyeun Park, Mihyun Oh, KyungHee Kim, Junghoon Han, and Wankyunn Whang College of Pharmacy, Chung-Ang University, Seoul, Korea **Abstract** – A new acetophenone named rumexin (3-hydroxy-5-methyl-4-O- β -D-glucopyranosyl acetophenone) was isolated from methanolic extract of *Rumex aquatica* together with eight known compounds, quercetin-3-O- β -D-glucopyranoside, musizin-8-O- β -D-glucopyranoside, quercetin-3-O- α -L-rhamnoside, emodin-8-O- β -D-glucopyranoside, caffeic acid, 1-O-caffeoyl- β -D-glucopyranoside, 1-methyl caffeic acid, kaempferol-3-O- β -D-glucuropyranoside. All of the above compounds were isolated from *Rumex aquatica* for the first time, and structures of compounds were established by spectroscopic means. Keywords – Rumex aquatica, Polygonaceae, Rumexin, 3-hydroxy-5-methyl-4-O-β-D-glucopyranosyl acetophenone. ### Introduction Rumex aquatica (Polygonaceae) has been used as substitute for Rhubarb, and used for dermatitis as a folk medicine in Korea. There are a few reports about Rumex species; 3-acetyl-2-methyl-1,5-dihydroxy-2,3-epoxynaphthoquinol from Rumex japonicus (Zee OP et al., 1998), 1-O-β-D-glucopyranosyl emodin from the root of Rumex gmelini Turcz (Kang Y et al., 1996), quercetin-3-rhamnoside, kaempferol-3-rhamnopyranosyl($1 \rightarrow 6$)galactoside, quercetin-3-glycosyl(1 \rightarrow 4)galactoside, emodin from Rumex chalepensis (Hasan A et al., 1995), chrysophanol, physcion, emodin, chrysophanin, rheochrysin, emodin-8-O-glucoside, kaempferol-7-O-rhamnoside, quercimetrin, orientin from *Rumex* luminiostrum (Abdel-Fattah H et al., 1994), essential oils from the aerial part of Rumex japonicus Houtt (Miyazawa M et al., 1981), emodin from Rumex hymenosepalus (Bulchalter, 1969), and a lot of flavonoids from Rumex acetosa and Rumex japonicus (Aritomi M, 1965). But there's no report about constituent as well as pharmacological activity of Rumex aquatica. So, as a chemotaxonomic research of the Rumex species, we studied about its constituents. ## **Experimental** **General procedures** – Melting points were recorded on a Gallenkamp melting point apparatus. ¹H and ¹³C- n a Ganciikanip inciting ponit apparatus. 11 and *Author for correspondence Fax: +82-2-816-7338; E-mail: whang-wk@cau.ac.kr NMR spectra were measured on a Varian Gemini 2000, 300 MHz and 75.5 MHz, respecti vely, with 0.1% TMS as internal stnadard. FAB mass spectra were recorded on a Hewlet-Packard 5890-JMS AX505 WA. UV spectra were recorded on a Hitachi U-3300, IR on Magna-750, and Polarimeter and optical rotation on a Jasco DIP-370. **Plant material** – The whole aerial parts of *Rumex aquaticus* were collected in April 1998 at medicinal plant garden of Chung-Ang University at Seoul, Korea. The plant was identified by Dr.Wan Kyunn Whang, College of Pharmacy Chung-Ang University. Extraction and isolation – The aerial parts of the plant (4.2 kg) were washed and extracted for a week at room temperature with MeOH (3×181) three times to yield 127 g of extract. Then extract was suspended with water and partitioned by ether (5×41), and water-soluble part (86.8 g) for this study. Water-soluble part was filtrated and subjected into Diaion HP-20 gel and then eluted by gradient of water/MeOH mixture (0, 20, 40, 60, 80, 100 v/v% MeOH). 20% MeOH fraction (1.5 g) was separated by Sephadex LH-20 gel column chromatography (5×90 cm) with 10% MeOH and further separated by MCI gel column chromatography (3.5×60 cm) with 25% MeOH to obtain compound 6 (36 mg). 40% MeOH fraction (6 g) was recrystalized by Water to obtain Water soluble fraction and compound 1 (2.151 g). Water soluble fraction was separated by Sephadex LH-20 for several times (30%, 10% MeOH) to obtain compound 5 (48 mg) and further chromatography (MCI gel, 25% MeOH) of the other fraction afforded compound 9 (48 mg). 60% MeOH fraction (4.2 g) was subjected into Sephadex LH- 76 Natural Product Sciences Table 1. ¹³C-NMR spectra of Compound 1, 3, 8 | Carbon No. | Compound 1 | Compound 2 | Compound 3 | |------------|------------|------------|------------| | 2 | 156.4 | 157.5 | 156.5 | | 3 | 133.3 | 134.4 | 133.3 | | 4 | 177.4 | 178.0 | 177.6 | | 5 | 161.4 | 161.5 | 161.3 | | 6 | 98.9 | 98.8 | 98.9 | | 7 | 164.5 | 164.4 | 164.7 | | 8 | 93.7 | 93.7 | 93.8 | | 9 | 156.5 | 156.7 | 156.5 | | 0 | 104.0 | 104.2 | 103.8 | | 1' | 121.0 | 121.3 | 120.9 | | 2' | 115.3 | 115.8 | 131.2 | | 3' | 145.1 | 145.4 | 115.2 | | 4' | 148.8 | 148.6 | 160.2 | | 5' | 116.2 | 115.6 | 115.2 | | 6' | 121.9 | 120.9 | 131.2 | | Glc-1 | 101.2 | 101.9 | 101.2 | | Glc-2 | 73.9 | 70.6 | 74.0 | | Glc-3 | 76.1 | 70.4 | 76.3 | | Glc-4 | 71.4 | 71.2 | 72.0 | | Glc-5 | 75.9 | 70.1 | 74.8 | | Glc-6 | 170.0 | 17.4 | 172.4 | 20 column chromatography to yield three fractions. First fraction yield compound 2 (101 mg) by sephadex LH-20 with 30% MeOH, second fraction was separated by MCI gel chromatography with 50% MeOH to yield compound 4 (36 mg) and compound 8 (38 mg). And the last fraction was subjected into Sephadex LH-20 gel column chromatography with 40% MeOH to yield compound 3 (150 mg) and compound 7 (42 mg). The analytical data of isolated compounds were listed below. **Compound 1** – (Quercetin-3-O-β-D-glucuropyranoside)-Lemon yellow amorphous, mp : 193~195°C IR v_{max}^{KBr} cm⁻¹ : 3385 (OH), 1651, 1602, 1502 (Aromatic ring), 1657 (C = O), 1052 (Glycosidic -CO), 876 (Aromatic ring OH) Negative FAB MS : m/z 477[M-H]⁻, 301[M-(GlcUA+H)]⁻¹H-NMR (300MHz, DMSO- d_6) : δ5.48 (1H, d, J = 7.2Hz, anomeric proton), 6.19 (1H, d, J = 2.1Hz, H-6), 6.39 (1H, d, J = 2.1Hz, H-8), 6.82 (1H, d, J = 8.4Hz, H-5'), 7.51 (1H, s, H-2'), 7.59 (1H, dd, J = 2.4, 6.3Hz, H-6'), 12.55 (-OH) ¹³C-NMR (75MHz, DMSO- d_6) : Table 1 **Compound 2** – (Musizin-8-O-β-D-glucopyranoside)-Lemon yellow needle-shaped, mp : 203~204°C, IR v_{max}^{KBr} cm⁻¹ : 3391 (OH), 1631, 1621, 1508 (Aromatic ring), 1643 (C = O), 1075 (Glycosidic -CO), 870 (Aromatic ring OH) Negative FAB MS : m/z 377[M-H]⁻, 215[M-(Glc-H)]⁻¹H-NMR (300MHz, DMSO- d_6) : 85.09 (1H, d, J = 7.2Mz, anomeric proton), 2.26 (3H, s, CH₃), 2.55 (3H, s, COCH₃), 7.23 (1H, s, H-4), 7.34 (1H, d, J = 8.1Mz, H-5), 7.41 (1H, dd, J = 8.1, 8.1Hz, H-6), 7.49 (1H, d, J = 8.1Hz, H-7), 9.62 (-OH) 13 C-NMR (75MHz, DMSO- d_6): 19.3 (CH₃), 32.2 (COCH₃), 60.9 (C-6'), 70.0 (C-4'), 73.6 (C-2'), 76.5 (C-3'), 77.9 (C-5'), 102.9 (C-1'), 110.1 (C-9), 119.8 (C-4), 122.6 (C-5), 127.8 (C-6) **Compound 3** – (Quercetin-3-O-α-L-rhamnoside)-Lemon yellow amorphous powder, mp : 250~252°C, IR v_{max}^{KBr} cm⁻¹ : 3372 (OH), 1656, 1607, 1506 (Aromatic ring), 1607 (C = O), 1087 (Glycosidic -CO), 813 (Aromatic ring OH) Negative FAB MS : m/z 477[M-H]⁻, 301[M-(Rha+H)]⁻¹H-NMR (300MHz, DMSO- d_6) : δ5.23 (1H, d, J = 1.2Hz, anomeric proton), 6.19 (1H, d, J = 1.5Hz, H-6), 6.39 (1H, d, J = 2.1Hz, H-8), 6.85 (1H, d, J = 8.1Hz, H-5'), 7.24 (1H, dd, J = 2.1, 8.4Hz, H-6'), 7.28 (1H, s, H-2') ¹³C-NMR (75MHz, DMSO- d_6) : Table 1 Compound 4 – (Emodin-8-O-β-D-glucopyranoside)-Orange color needle-shaped, mp : 210~211°C, IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹ : 3420 (OH), 1620 (Chelated C = O), 1597, 1509, 1478 (Aromatic ring), 1071 (Glycosidic -CO), 1046 (Glycosidic -CO) Negative FAB MS : m/z 431[M-H]⁻, 269[M-(Glc+H)]⁻¹H-NMR (300MHz, DMSO- d_6) : 85.06 (1H, d, J = 7.5Hz, anomeric proton), 2.40 (3H, s, CH₃), 7.00 (1H, d, J = 2.1Hz, H-7), 7.17 (1H, d, J = 2.7Hz, H-2), 7.28 (1H, d, J = 2.4Hz, H-5), 7.47 (1H, d, J = 2.4Hz, H-4), 13.23 (-OH) ¹³C-NMR (75MHz, DMSO- d_6) : 26.5 (CH₃), 56.4 (C-6'), 65.3 (C-4'), 69.2 (C-2'), 72.3 (C-3'), 73.2 (C-5'), 96.8 (C-1'), 104.4 (C-7), 104.5 (C-5), 109.5 (C-9a), 110.5 (C-8a), 115.2 (C-4), 120.2 (C-2), 128.1 (C-4a), 132.5 (C-10a), 142.9 (C-3), 157.2 (C-8), 157.7 (C-1), 161.6 (C-6), 178.3 (C-10), 182.4 (C-9) **Compound 5** – (Caffeic acid)- Brown amorphous powder, mp: 223~225°C, IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3435 (OH), 1647, 1619, 1510 (Aromatic ring) Negative FAB MS: m/z 179[M-H]⁻¹H-NMR (300MHz, DMSO- d_o): δ 6.15 (1H, d, J = 15.9Hz, H-3), 6.74 (1H, d, J = 8.1Hz, H-6'), 6.94 (1H, d, J = 7.7Hz, H-2'), 7.00 (1H, d, J = 0.6Hz, H-5'), 7.38 (1H, d, J = 15.9Hz, H-2), $\frac{1}{3}$ C-NMR (75MHz, DMSO- d_o): Table 2 **Compound** 6 – (1-O-caffeoyl-β-D-glucopyranoside)-Brown amorphous powder, mp : 212°C, IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹ :3385 (OH), 1651, 1602, 1502 (Aromatic ring), 1072 (Glycosidic -CO) Negative FAB MS : m/z 341[M-H]⁻, 179[M-(Glc+H)]⁻¹H-NMR (300MHz, DMSO- d_6) : δ5.59 (1H, d, J = 8.1Hz, anomeric proton), 6.39 (1H, d, J = 15.9Hz, H-3), 6.89 (1H, d, J = 8.4Hz, H-6'), 7.17 (1H, d, J = 8.1Hz, H-2'), 7.19 (1H, bs, H-5'), 7.68 (1H, d, J = 15.6Hz, H-2), 9.35, 9.77 (-OH) ¹³C-NMR (75MHz, DMSO- d_6) : Table 2 **Compound** 7 – (1-methyl caffeic acid)-Brown amorphous powder, mp: 158~160°C, IR ν_{max}^{KBr} cm⁻¹: 3385 (OH), 1651, 1602, 1502 (Aromatic ring) Negative FAB MS: m/ Vol. 11, No. 2, 2005 Table 2. ¹³C-NMR spectra of Compound 5, 6, 7 | per a | | | | | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|-----------------------|--| | Carbon No. | Compound 5 | Compound 6 | Compound 7 | | | 1 | 168.2 | 165.9 | 167.3 | | | 2 | 115.9 | 116.3 | 115.9 | | | 3 | 144.7 | 146.0 | 145.4 | | | 1' | 125.8 | 125.9 | 125.7 | | | 2' | 115.3 | 115.2 | 114.9 | | | 3' | 145.7 | 146.9 | 145.8 | | | 4' | 148.3 | 149.1 | 148.7 | | | 5' | 114.7 | 113.8 | 113.9 | | | 6' | 121.3 | 122.3 | 121.7 | | | Glc-1 | | 94.6 | OCH ₃ 51.3 | | | Glc-2 | | 72.8 | | | | Glc-3 | | 78.1 | | | | Glc-4 | | 69.8 | | | | Glc-5 | | 76.8 | | | | Glc-6 | | 60.9 | | | z 193[M-H]⁻¹H-NMR (300MHz, DMSO- d_6): δ 6.29 (1H, d, J=16.2Hz, H-3), 6.78 (1H, d, J=8.1Hz, H-6'), 7.02 (1H, d, J=0.3, 2.1Hz, H-2'), 7.07 (1H, d, J=2.1Hz, H-5'), 7.50 (1H, d, J=16.2Hz, H-2), 9.21, 9.65 (-OH), 3.70 (3H, s, -OCH₃) ¹³C-NMR (75MHz, DMSO- d_6): Table 2 **Compound 8** – (kaempferol-3-O-β-D-glucuropyranoside) -Brown amorphous powder, mp : 189~190.5°C, IR $\nu_{\rm max}^{\rm KBr}$ cm⁻¹ :3372 (OH), 1656, 1607, 1506 (Aromatic ring), 1607 (C = O), 1087 (Glycosidic -CO), 813 (Aromatic ring OH) Negative FAB MS : m/z 461[M-H]⁻, 285[M-(GlcUA +H)]⁻¹H-NMR (300MHz, DMSO- d_6) : δ5.45 (1H, d, J = 6.6Hz, anomeric proton), 6.10 (1H, s, H-6), 6.32 (1H, s, H-8), 6.84 (2H, d, J = 8.7Hz, H-3', 5'), 8.01 (2H, d, J = 8.7Hz, H-2', 6'), 12.47 (-OH) ¹³C-NMR (75MHz, DMSO - d_6) : Table 1 **Compound 9** – (3-hydroxy-5-methyl-4-O-β-D-glucopyranosyl acetophenone, Rumexin)-Brown amorphous powder, m.p. 150-155°C [α]D: +0.38° FAB-MS: m/z 327 [M]⁻, 165 [M-Glc]⁻ IR: Vmax 3365, 1621, 1074 cm⁻¹ UV: λ max 238, 280 nm; ¹H-NMR (300 MHz, DMSO- d_6): λ 4.78 (1 H, d, J=7.7Hz, anomeric H), 6.39/6.36 (d, J=2.1Hz, 1.8Hz, H-1, 3 respectively), 10.5 (-OH); ¹³C-NMR (75MHz, DMSO- d_6): λ ppm 203.6, 32.2 (acetyl), 159.0 (C-4), 157.3 (C-5), 137.9 (C-1), 122.5 (C-3), 109.6 (C-2), 101.4 (C-6), 100.2, 77.0, 76.6, 73.1, 69.5, 60.5 (glycosidic signals), 20.1 (methyl) ### **Results and Discussion** Rumexin was obtained as a yellow powder from the aerial part of *Rumex aquatica* as through several phytochemical process and gel column chromatography. Table 3. Isolated compounds from the aerial part of Rumex aquatica | No. | Name of the known compounds and the yields | |-----|----------------------------------------------------------------| | 1 | Quercetin-3-O-β-D-glucuropyranoside (2.151 g) | | 2 | Musizin-8-O-β-D-glucopyranoside (101 mg) | | 3 | Quercetin-3-O-α-L-rhamnoside (150 mg) | | 4 | Emodin-8-O-β-D-glucopyranoside (36 mg) | | 5 | Caffeic acid (48 mg) | | 6 | 1-O-caffeoyl-β-D-glucopyranoside (36 mg) | | 7 | 1-methyl caffeic acid (42 mg) | | 8 | kaempferol-3-O-β-D-glucuronopyranoside (38 mg) | | 9 | 3-hydroxy-5-methyl-4-O-β-D-glucopyranosyl acetophenone (48 mg) | Fig. 1. Correlation of C-H in HMBC of Compound 9. The UV spectrum in MeOH showed absorption at 238, 280 nm, and IR spectrum at 3365, 1621, and 1074cm^{-1} . Negative FAB-MS spectrum showed a molecular ion peak at m/z 327 [M]⁻¹, and a fragment ion peak that showed a loss of a hexose molecule at m/z 165 [M-Hexose]⁻¹. 1 H-NMR spectrum gave us doublet signals at $\delta 6.39$, 6.36 (J value = 2.1, 1.8Hz, respectively) which means meta-configuration of two aromatic proton. The other doublet signal at $\delta 4.78$ (J value = 7.7Hz) was an anomeric proton which shows a, β-configuration. And the signals at δ2.14, 2.44 by two methyl group were observed. In ¹³C-NMR spectrum, signals at δ100.2, 77.0, 76.6, 73.1, 69.5, 60.5 indicated the existence of a glucose, and it was confirmed by usual acid-hydrolysis method and TLC with a D-glucose standard. There was a signal at δ203.6, a ketone signal. And two methyl signals at δ 20.1, 32.2 but latter was low field shifted either. Put together these evidences, we could assume that there is an acetyl group on benzene ring. So, the structure of compound 9 is elucidated as below; a benzene ring which has two proton, an acetyl group, a methyl group, an O-glucose and a hydroxyl group. To confirm the structure, we used 2D-NMR technique such as H¹-H¹Cosy, HMQC, and HMBC. From HMQC, we found that aromatic proton siganls at $\delta 6.39$, $\delta 6.36$ belongs to carbon signals at $\delta 101.4$, 109.6, and from H¹-H¹Cosy, proton at δ6.36 is adjacent to methyl group. HMBC technique gave us inform that there 78 Natural Product Sciences are two carbon signals (δ 122.5, 159.0) that interact with two aromatic proton (δ 6.39, 6.36) and the signal at δ 159.0 also interacts with anomeric proton, so this carbon is ether-bonded with glucose. As for signal at δ 122.5, it also interacts with methyl group's proton, so this carbon is between two protons. Carbon signal at δ 109.6, 122.5, 137.9 interact with proton of methyl group, and δ 20.1, 101.4, 122.5, 159.0 with δ 6.36. The HMBC experiment confirmed the structure for the new compound 9 (3-hydroxy-5-methyl-4-O- β -D-glucopyranosyl acetophenone), which was then named Rumexin. Other known compound **1,2,3,4,5,6,7,8** isolated and characterized by spectroscopic methods and by comparison with literature: Quercetin-3-O-β-D-glucuropyranoside (2.151 g) (Kashiwada. *et al.*, 2004), Musizin-8-O-β-D-glucopyranoside (101 mg) (Li *et al.*, 1989), Quercetin-3-O-α-L-rhamnoside (150 mg) (Shamuratov *et al.*, 2003) (Ko *et al.*, 1995), Emodin-8-O-β-D-glucopyranoside (36 mg) (Coskun *et al.*, 1990), Caffeic acid (48 mg) (Yang *et al.*, 2002) (Nishibe *et al.*, 1982), 1-O-caffeoyl-β-D-glucopyranoside (36 mg) (Warashina *et al.*, 1992), 1-methyl caffeic acid (42 mg) (Kunzemann *et al.*, 1997), and Kaempferol-3-O-β-D-glucuropyranoside (38 mg) (Dumknow *et al.*, 1969) Among the compounds, Compound 1 was isolated in bulk volume (2.151 g from 4.2 kg of plant sample) and it seems that *Rumex aquatica* can be used as a resource material for it. ### Acknowledgements This Research was supporfed by the Chung-Ang University Research Grants in 2000 ## References - Abd el-Fattah, H., Gohar, A., El-Dahmy, S., and Hubaishi, A., Phytochemical investigation of *Rumex luminiastrum*, *Acta. Pharm. Hung.* **64**, 83-85 (1994). - Aritomi, M., Kiyota, I., and Mazaki, T., Flavonoid constituents in leaves of *Rumex acetosa* and *R. japonicus, Chem. Pharm. Bull.* **13**, 470-1471 (1965). - Bulchalter, L., Isolation and identification of emodin (1,3,8-tri-hydroxy-6-methyl anthraquinone) from *Rumex hymenosepalus*, family Polygonaceae., *J. Pharm. Sci.* **58**, 904 (1969). - Hasan, A., Ahmed, I., Jay, M., and Viorin, B.. Flavonoid glycosides - and an anthraquinones from *Rumex chalepensis*, *Phytochem.*, **39**, 1211-1213 (1995). - Coskun, M., Satake, T., Hori, K., Saiki, Y., and Tanker, M., Studies on Turkish *Rhamnus* species. Part 5. Anthraquinone glycosides from *Rhamnus libanoticus.*, *Phytochem.* 29, 2018-2020 (1990). - Dumkow, K., Kaempferol-3-glucuronide and quercetin-3-glucuronide, principal flavonoids of *Euphorbia lathyris* and their separation on acetylated polyamide, *Z. Naturforsch. B.* **24**, 358 (1969). - Kang, Y., Wang, Z., Li, J., and Lin, L.. Issolation and identification of two anthraquinones from *Rumex gmelini*, *Chung Kuo Chung Yao Tsa Chih.*, 21, 741-742, 762 (1996). - Kashiwada, Y., Aoshima, A., Ikeshiro, Y., Chen, Y.P., Furukawa, H., Itoigawa, M., Fujioka, T., Mihashi, K., Cosentino, L., Morris-N, Susan L., and Lee, K.H., Anti-HIV benzylisoquinoline alkaloids and flavonoids from the leaves of Nelumbo nucifera, and structure-activity correlations with related alkaloids. *Bioorganic & Medicinal Chem.* 13, 443-448 (2005). - Ko, S.K, Whang, W.K, and Kim, I.H., Anthraquinone and stilbene derivatives from the cultivated Korean Rhubarb rhizomes., *Arch Pharm Res.* 18, 282-288 (1995). - Kunzemann, J. and Herrmann, K., Isoaltion and identification of flavon(ol)-O-glycosides in caraway(*Carum carvi*), fennel (*Foeniculum vulgare*), anise(*Pimpinella anisum*), and coriander (*Coriandrum sativum*), and of flavon-C-glycoside in anise. I. Phenolics of spices, Z. *Lesbensm. Unters. Forsch.* **164**, 194-200 (1977). - Li, X., McLaughlin, Jerry L., Bioactive compounds from the root of *Myrsine africana*. *J. Nat. Prod.*, **52**, 660-662 (1989). - Miyazawa, M., Tanaka, S., and Kameoka, H., The Constituents of essential oil from *Rumex japonicus, Yakugaku Zasshi*, **101**, 660-662 (1981). - Nishibe, S., Okabe, K., Tsukamoto, H., Sakushima, A., and Hisada, S., The structure of korsythiaside isolated from *Forsythia suspensa, Chem. Pharm. Bull.*, 30, 1048-1050 (1982). - Shamuratov, B.A., Mavlyanov, S.M., Dalimov, D.N., Allaniyazova, M.K., and Sadykov A.S., Polyphenols from Certain Gossypium hirsutum Varieties., Chem. Nat. Comp., 39, 597-598 (2003). - Warashina, T., Miyase, T., and Ueno, A., Phenylethanoids and Lignan glycosides from *Verbascum thapsus*, *Phytochem...*, 31, 961-965 (1992). - Yang, J., Guo, G., Zhou, L., and Ding, Y., Studies on chemical constituents of *Solanum lyratum.*, *Zhongguo Zhongyao Zazhi* 27, 42-43 (2002). - Zee, O.P., Kim, D.K., Kwon, H.C., and Lee, K.R., A new epoxynaphthoquinol from *Rumex japonicus*, *Arch. Pharm. Res.* **21**, 385-386 (1998). (Accepted April 29, 2005)