References
-
Ardehali H. Role of the mitochondrial ATP-sensitive
$K^{+}$ channels in cardioprotection. Acta Biochim Pol 51: 379-390, 2004 -
Cook DL, Hales CN. Intracellular ATP directly blocks
$K^{+}$ channels in pancreatic$\beta$ -cells. Nature 311: 271-273, 1984 https://doi.org/10.1038/311271a0 - Debska G, Kicinska A, Skalska J, Szewczyk A, May R, Elger CE, Kunz WS. Opening of potassium channels modulates mitochondrial function in rat skeletal muscle. Biochim Biophys Acta 1556: 97-105, 2002 https://doi.org/10.1016/S0005-2728(02)00340-7
- Fukuta H, Kito Y, Suzuki H. Spontaneous electrical activity and associated changes in calcium concentration in guinea-pig gastric smooth muscle. J Physiol 540(Pt 1): 249-260, 2002 https://doi.org/10.1113/jphysiol.2001.013306
-
Garlid KD, Paucek P, Yarov-Yarovoy V, Murray HN, Darbenzio RB, D'Alonzo AJ, Lodge NJ, Smith MA, Grover GJ. Cardioprotective effect of diazoxide and its interaction with mitochondrial ATPsensitive
$K^{+}$ channels. Possible mechanism of cardioprotection. Circ Res 81: 1072-1082, 1997 https://doi.org/10.1161/01.RES.81.6.1072 - Goto K, Matsuoka S, Noma A. Two types of spontaneous depolarizations in the interstitial cells freshly prepared from the murine small intestine. J Physiol 559: 411-422, 2004 https://doi.org/10.1113/jphysiol.2004.063875
-
Grover GJ, D'Alonzo AJ, Dzwonczyk S, Parham CS, Darbenzio RB. Preconditioning is not abolished by the delayed rectifier
$K^{+}$ blocker dofetilide. Am J Physiol 271: H1207-1214, 1996 - Grover GJ, Garlid KD. ATP-sensitive potassium channels: a review of their cardioprotective pharmacology. J Mol Cell Cardiol 32: 677-695, 2000 https://doi.org/10.1006/jmcc.2000.1111
-
Gross GJ, Fryer RM. Sarcolemmal versus mitochondrial ATP sensitive
$K^{+}$ channels and myocardial preconditioning. Circ Res 84: 973-979, 1999 https://doi.org/10.1161/01.RES.84.9.973 - Huizinga JD, Thuneberg L, Kluppel M, Malysz J, Mikkelsen HB, Bernstein A. W/kit gene required for intestinal pacemaker activity. Nature 373: 347-349, 1995. https://doi.org/10.1038/373347a0
-
Inoue I, Nagase H, Kishi K, Higuti T. ATP-sensitive
$K^{+}$ channel in the mitochondrial inner membrane. Nature 352: 244-247, 1991 https://doi.org/10.1038/352244a0 - Koh SD, Sanders KM, Ward SM. Spontaneous electrical rhythmicity in cultured interstitial cells of Cajal from the murine small intestine. J Physiol 513: 203-213, 1998 https://doi.org/10.1111/j.1469-7793.1998.203by.x
- Langton P, Ward SM, Carl A, Norell A, Sanders KM. Spontaneous electrical activity of interstitial cells of Cajal isolated from canine proximal colon. Proc Natl Acad Sci USA 86: 7280-7284, 1989 https://doi.org/10.1073/pnas.86.18.7280
-
Litsky ML, Pfeiffer DR. Regulation of the mitochondrial
$Ca^{2+}$ uniporter by external adenine nucleotides: the uniporter behaves like a gated channel which is regulated by nucleotides and divalent cations. Biochemistry 36: 7071-7080, 1997 https://doi.org/10.1021/bi970180y - McCully JD, Levitsky S. The mitochondrial K(ATP) channel and cardioprotection. Ann Thorac Surg 75: S667-673, 2003 https://doi.org/10.1016/S0003-4975(02)04689-1
-
Noma A. ATP-regulated
$K^{+}$ channels in cardiac muscle. Nature 305: 147-148, 1983 https://doi.org/10.1038/305147a0 - Oldenburg O, Cohen MV, Yellon DM, Downey JM. Mitochondrial K (ATP) channels: role in cardioprotection. Cardiovasc Res 55: 429-437, 2002 https://doi.org/10.1016/S0008-6363(02)00439-X
- Ordog T, Ward SM, Sanders KM. Interstitial cells of cajal generate electrical slow waves in the murine stomach. J Physiol 518: 257-269, 1999. https://doi.org/10.1111/j.1469-7793.1999.0257r.x
- O'Rourke B. Myocardial K (ATP) channels in preconditioning. Circ Res 87: 845-855, 2000 https://doi.org/10.1161/01.RES.87.10.845
- Sanders KM. A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterology 111: 492-515, 1996 https://doi.org/10.1053/gast.1996.v111.pm8690216
- Seino S. ATP-sensitive potassium channels: a model of heteromultimeric potassium channel/receptor assemblies. Annu Rev Physiol 61: 337-362, 1999 https://doi.org/10.1146/annurev.physiol.61.1.337
- Sparagna GC, Gunter KK, Sheu SS, Gunter TE. Mitochondrial calcium uptake from physiological-type pulses of calcium. A description of the rapid uptake mode. J Biol Chem 270: 27510-27515, 1995 https://doi.org/10.1074/jbc.270.46.27510
- Spruce AE, Standen NB, Stanfield PR. Voltage-dependent ATP-sensitive potassium channels of skeletal muscle membrane. Nature 316: 736-738, 1985 https://doi.org/10.1038/316736a0
-
Standen NB, Quayle JM, Davies NW, Brayden JE, Huang Y, Nelson MT. Hyperpolarizing vasodilators activate ATP sensitive
$K^{+}$ channels in arterial smooth muscle. Nature 245: 177-180, 1989 - Szurszewski JH. Electrical basis for gastrointestinal motility. In: Johnson LR ed, Physiology of the Gastrointestinal Tract. 2nd ed. Raven Press, New York, p 383-422, 1987
- Thomsen L, Robinson TL, Lee JC, Farraway LA, Hughes MJ, Andrews DW, Huizinga JD. Interstitial cells of Cajal generate a rhythmic pacemaker current. Nat Med 4: 848-851, 1998 https://doi.org/10.1038/nm0798-848
- Ward SM, Burns AJ, Torihashi S, Sanders KM. Mutation of the proto-oncogene c-kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. J Physiol 480: 91-97, 1994
- Ward SM, Ordog T, Koh SD, Baker SA, Jun JY, Amberg G, Monaghan K, Sanders KM. Pacemaking in interstitial cells of Cajal depends upon calcium handling by endoplasmic reticulum and mitochondria. J Physiol 525: 355-361, 2000 https://doi.org/10.1111/j.1469-7793.2000.t01-1-00355.x
- Yao Z, Gross GJ. Effects of the KATP channel opener bimakalim on coronary blood flow monophasic action potential duration and infarct size in dogs. Circulation 89: 1769-1775, 1994 https://doi.org/10.1161/01.CIR.89.4.1769