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Whole bee venom (WBV) and its major component, melittin, have been reported to induce long-lasting
spontaneous flinchings and hyperalgesia. The current study was designed to elucidate the peripheral
and spinal mechanisms of N-methyl-D-aspartate (NMDA) and non-NMDA receptors by which intra-
plantar (i.pl.) injection of WBV and melittin induced nociceptive responses. Changes in mechanical
threshold and flinching behaviors were measured after the injection of WBV (0.04 mg or 0.1 mg/paw)
and melittin (0.02 mg or 0.05 mg/paw) into the mid-plantar area of a rat hindpaw. MK-801 and CNQX
(6-cyano-7-nitroquinoxaline-2,3-dione disodium) were administered intrathecally (i.t. 10 zg) or i.pl.(15 rg)
15 min before or i.t. 60 min after i.pl. WBV and melittin injection. Intrathecal pre- and post-
administration of MK-801 and CNQX significantly attenuated the ability of high dose WBV and melittin
to reduce paw withdrawal threshold (PWT). In the rat injected with low dose, but not high dose, of
WBYV and melittin, i.pl. injection of MK-801 effectively suppressed the decrease of PWTs only at the
later time-points, but the inhibitory effect of CNQX (i.pl.) was significant at all time-point after the
injection of low dose melittin. High dose WBV- and melittin-induced spontaneous flinchings were
significantly suppressed by i.t. administration of MK-801 and CNQX, and low dose WBV- and
melittin-induced flinchings were significantly reduced only by intraplantarly administered CNQX, but
not by MK-801. These experimental flinchings suggest that spinal, and partial peripheral mechanisms

of NMDA and non-NMDA receptors are involved in the development and maintenance of WBV- and
melittin-induced nociceptive responses.
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INTRODUCTION

Since Curtis et al (1959) first reported that an ionto-
phoretic application of L-glutamate and L-aspartate pro-
duced a strong excitation of spinal neurons, evidence has
accumulated that excitatory amino acids (EAAs) are can-
didate neurotransmitters responsible for nociceptive trans-
mission in the spinal cord and peripheral sites. High
density of EAA receptor binding sites is located in the super-
ficial laminae of the dorsal horn where most nociceptive
primary afferent fibers terminate (De Biasi & Rustioni,
1988; Merighi et al, 1991). Small myelinated and unmye-
linated fibers also have glutamate immunoreactivity which
increases further in inflammatory state (Westlund et al,
1992; Carlton & Coggeshall, 1999). Inflammation and nocicep-
tive stimulation of primary afferent fibers produce a signi-
ficant increase in the release of gultamate and aspartate
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in the dorsal spinal cord and peripheral site (Jeftinija et
al, 1991; Paleckova et al, 1992; Sluka & Westlund, 1993;
Omote et al, 1998; deGroot et al, 2000). The majority of
neurons activated by iontophoretic administration of EAA
are located mainly in laminae [ and II of spinal cord and
receive C-fiber inputs from the peripheral receptive field
(Schneider & Perl, 1985, 1988).

In the behavioral test in rats, intrathecal (i.t.) or intra-
plantar (i.pl.) administration of NMDA and non-NMDA
agonists induces thermal and mechanical hyperalgesia
which is alleviated by i.t. or i.pl. injection of NMDA and
non-NMDA receptor antagonists, respectively (Raigorodsky
& Urca, 1987; Zhou et al, 1996). NMDA and non-NMDA
receptor agonists are also reported to be implicated in the
development and maintenance of hyperalgesia and al-
lodynia induced by nerve injury and inflammation with
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different causes (Mao et al, 1992; Ren et al, 1992; Sluka
et al, 1994; Kim et al, 1997).

Bee venom (BV) has dual effects; antinociceptive and
nociceptive actions. In animal and clinical studies, BV
injection into acupoint or painful sites reduced inflam-
matory somatic and visceral pain, and suppressed c-Fos
protein expression in the spinal cord (Kwon et al, 2001a;
2001b; Lee et al, 2001). On the other hand, Lariviere and
Melzack (1996) introduced the bee venom test in which i.pl.
injection of bee venom (BV) into the rat hindpaw induced
dose-dependent tonic pain with local inflammation and
edema. In the subsequent behavioral and electrophysio-
logical studies, BV-induced pain has been known to have
characteristics of spontaneous flinching behaviors, thermal
and mechanical hyperalgesia, allodynia, contralateral heat
hyperalgesia and c¢-Fos expression in the spinal dorsal horn
(Chen et al, 1998; Luo et al, 1998; Chen et al, 1999a, b,
2000; You et al, 2002). The time-courses of ¢-Fos expression
and increased discharges of wide dynamic range (WDR)
neurons parallel those of hyperalgesia and spontaneous
flinchings, respectively (Chen et al, 1999b; You & Chen,
1999). WDR neurons without afferent inputs from C fiber
are not activated by subcutaneous (s.c.) BV-injection into
the receptive field (Chen et al, 1998), and conduction block
of afferent fibers by pretreatment with capsaicin prevents
the development of hyperalgesia and spontaneous flin-
chings by s.c injection of BV and melittin (Chen & Chen,
2000; Shin & Kim, 2004). In the comparative studies on
bee venom test and formalin test, bee venom test has been
reported to be a more useful model in the study of pain
than the formalin test (Chen et al, 1999b; You et al, 2002).
Recent studies reported that melittin, a major component
of BV, also induced long-lasting and dose-dependent spon-
taneous flinchings, hyperalgesia, allodynia and edema, and
there was no substantial difference in the time-course and
severeness of nociceptive responses induced by melittin and
BV (Shin et al, 2004; Li & Chen, 2004). Shin & Kim (2004)
reported that, in a behavioral and electrophysiological
study, melittin-induced reduction of mechanical threshold
and flinchings was caused by selective activation of capsai-
cin-sensitive primary afferent fibers in rat. All these find-
ings suggest that most of BV-induced nociceptive responses
are mediated through the melittin-induced selective activa-
tion of primary afferent C fibers.

Although it is clear that BV-induced nociceptive res-
ponses are mediated through selective activation of primary
afferent C fibers by melittin (Shin & Kim, 2004), the mech-
anism by which BV and melittin cause rapid activation of
C fibers has not clearly been understood. Inflammation
induced by proinflammatory substances of bee venom may
contribute to activation and/or sensitization of nociceptive
afferent fibers, resulting in sustained hyperalgesia (Haber-
mehl, 1981; Calixto et al, 2003). In the recent study from
our laboratory, i.t. or i.pl. administration of L- and N-type,
but not P-type, Ca®" channel antagonists and intracellular
Ca®" antagonists strongly suppressed melittin-induced flin-
chings and mechanical allodynia (Lee et al, 2004). Spinal
protein kinase C, Psx-purinoceptor and descending facili-
tatory pathway from the rostral medial medulla have been
known to contribute to BV-induced spontaneous nociception
(Zheng & Chen, 2000; Li et al, 2000; Chen et al, 2003).
You et al (2002) reported that peripheral NMDA receptor,
but not non-NMDA receptors, plays a pivotal role in the
development and maintenance of BV-induced increase in
discharge of WDR neurons. However, there is a report that

non-NMDA receptors are implicated only in the induction
of persistent firing of the dorsal horn WDR neurons by s.c
BV injection (Chen et al, 1999a). To our knowledge, it is
not known whether NMDA and non-NMDA receptors are
involved in melittin-induced nociceptive responses. Current
experiment was undertaken to investigate the spinal and
peripheral mechanisms of NMDA and non-NMDA receptors
in the production and maintenance of melittin- as well as
BV- induced spontaneous flinchings and mechanical allody-
nia in rat.

METHODS

Male Sprague-Dawley rats (250~ 300 g) were used in this
experiment. The Animal Care and Use Committee at
Hanyang University approved all experimental protocols,
and algesiometric assays were conducted under the ethical
guidelines set forth by the International Association for the
Study of Pain.

All rats were placed on an elevated metal mesh floor and
allowed to acclimate for at least 30 min before behavioral
testing. Von Frey filament was applied vertically to the
mid-plantar surface of the right hindpaw in an ascending
intensity order from underneath the floor. A bending force
being able to evoke a brisk paw withdrawal in more than
50% of 6 trials was expressed as the paw withdrawal
mechanical threshold PWT, g). 26 g of bending force of von
Frey filament was selected as the upper limit for testing,
since stiffer filaments with bending force of more than 10%
of body weight tends to passively raise the entire limb
rather than to cause an active brisk withdrawal (Chaplan
et al, 1994). Rats that sharply withdrew their paws, when
von Frey filament with weak bending force below 26 g was
applied, were not used in the experiment. A mirror was
placed below the metal mesh floor at a 30° angle to allow
an unobstructed counting of flinching. Changes in PWT at
a given time-point and total number of flinchings for the
initial 30 min were measured after the injection of whole
bee venom (WBV, 0.04 or 0.1 mg/paw) and melittin (0.02
mg or 0.05 mg/paw) into the mid-plantar area of the right
hindpaw. Only changes in PWT and flinching behaviors
induced by low doses of WBV (0.04 mg/paw) and melittin
(0.02 mg/paw) were used in the experiment in which peri-
pheral action of NMDA and non-NMDA receptor antago-
nists was studied. We measured the total number of
flinchings for the first 30 min, because more than 95% of
flinchings were observed within the first 30 min after i.pl.
injection of WBV or melittin. Because approximately 50%
of dry bee venom is melittin, the dosage of melittin was
determined to be one half the WBV dosage. To observe the
effects of EAA receptor antagonists on the WBV- or
melittin-induced nociceptive responses, NMDA (MK-801,
Sigma) and non-NMDA (6-cyano-7-nitroquinoxaline-2,3-
dione disodium, CNQX, Tocris) receptor antagonists were
administered intrathecally or intraplantarly 15 min before
or intrathecally 60 min after WBV and melittin injection.
MK-801 and CNQX were administered intrathecally at the
dose of 10 ¢g and intraplantarly at the dose of 15 #g. Since
doses of NMDA and non-NMDA receptor antagonists
higher than those used in this experiment could not be
administered due to side effects, we investigated the effect
of EAA receptor antagonists on the low dose WBV- and
melittin-induced nociceptive responses. For i.t. administra-
tion of MK-801 and CNQX, chronic it. catheters were
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inserted under the enflurane anesthesia by passing a PE-10
tubing through an incision in the atlanto-occipital mem-
brane to a position 8.5 cm caudal to the cisterna at a level
of the lumbar enlargement. Rats were allowed to recover
for at least 5 days before being used in the experiment.
All rats showing motor defects were not used in the
experiment. All drugs were dissolved in 10 xl of saline. In
the preliminary experiments, i.t. or i.pl. injection of 10 g1
saline and intraperitoneal administration of MK-801 and
CNQX (10 ug & 15 g) did not induce any changes in PWT
and spontaneous flinchings. Each rat was tested for a single
antagonist.

The data are expressed as mean+SE and analyzed using
ANOVA, followed by the Newman-Keuls test. P values less
than 0.05 were considered significant. When experiments
were completed, the rats were euthanized by an overdose
of pentobarbital sodium.

RESULTS

Intraplantar administration of WBV (0.1mg/paw, n=13)
produced rapid and strong reduction of PWT (Fig. 1) and
an increase of flinching behaviors (Fig. 7). PWT was 3.1+
0.4 g at 10 min after WBV injection and thereafter, the
reduced PWT very slowly increased to 5.7+0.5 g and 9.8+
1.5 g at 60 min and 180 min after WBYV injection, respec-
tively. The decreased PWT was recovered almost com-
pletely to normal level 24h after WBV injection. Intrathecal
pre-administration of NMDA receptor antagonist, MK-801
(10 ug, n=10) significantly suppressed the ability of WBV
to reduce PWT at all timepoints, except 24h after WBV
injection (Fig. 1, p<0.01 or 0.001). PWTs of the rat pre-
administered with MK-801 were significantly high, com-
pared to corresponding PWTs of the rat injected with i.pl.
WBV only. MK-801 had stronger effects on the PWTs at
all time-points 30 min after i.pl. WBV injection than on
the PWTs for the first 20 min. Intrathecal post-injection
of MK-801 (n=8) 60 min after i.pl. WBV injection also
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Fig. 1. Effects of NMDA receptor antagonist, MK-801, on the
changes in mechanical threshold following intraplantar injection of
whole bee venom (WBV, 0.1 mg/paw, ). Intraplantar injection of
MK-801 (15 ¢g) 15 min before WBYV injection did not have any effect
on WBV-lowered mechanical threshold (o). However, intrathecal
pre- (a) or post-treatment (o) of MK-801 (10 xg) strongly sup-
pressed the ability of WBV to reduce a mechanical threshold. Arrow
indicates the time when MK-801 was intrathecally administered
in post-treatment experiment. *; p <0.01, **; p <0.001, significant
differences from the WBV-induced decrease in mechanical thresh-
old.

significantly attenuated WBV-induced reduction of PWT
(Fig. 1). PWTs of the rats post-injected with MK-801 rapidly
increased to 17.2+3.2 g (p<0.01) 30 min after i.t. post-
treatment of MK-801, compared to 6.1 + 3.2g before MK-801
treatment. However, 1.pl. administration of MK-801 (15 ug,
n=8) 15 min before WBYV injection did not have any signi-
ficant effects on WBV-induced reduction of PWTs (Fig. 1).
There were no substantial differences in PWTs of the rats
injected with WBV only or with WBV and i.pl. MK-801,
at all time-points after WBV injection.

In Fig. 2, the data on the changes of PWTs induced by
i.pl. WBYV injection were same as those used in Fig. 1. After
i.t. pre-administration of the non-NMDA receptor anta-
gonist, CNQX (10 g, n=9), 15 min before i.pl. WBV injec-
tion, the ability of WBV to reduce PWT was very signi-
ficantly attenuated at all time-points except 24h after i.pl.
WBYV injection (Fig. 2, p<0.001). PWTs of the rats pre-
administered with it. CNQX were almost completely
recovered to normal level 120 min after i.pl. WBV injection.

The decrease of PWT of the rat that received i.t. post-
administration of CNQX (n=8) 60 min after i.pl. WBV
injection was significantly less than that of the rat injected
with i.pl. WBV only (Fig. 2, p<0.001). PWTs of the rat
post-treated with CNQX were 18.6+2.9 g and 24.3+1.7 g
at 90 min and 180 min after i.pl. WBV injection, whereas
PWTs of WBV-injected rats were 7.3+ 1.2 g and 9.8+1.5
g, respectively. On the other hand, there was no significant
difference in the decrease of PWTs of the rat administered
with i.pl. WBV and CNQX or i.pl. WBV only at all time-
points after i.pl. WBV injection (Fig, 2, n=8).

Intraplantar administration of melittin (0.05 mg/paw,
n=12) induced rapid and sustained decrease of PWT (Fig.
3) and an increase of flinching behaviors (Fig. 7). The
time-course and severity of decrease of PWT induced by
WBV (0.1 mg/paw) and melittin (0.05 mg/paw) were very
similar. As in the case of WBV-induced reduction of PWT,
PWT rapidly reduced to 2.9+0.4 g 10 min after i.pl
melittin injection, thereafter, increased slowly to 5.4+0.4
g and 9.0£1.4 g at 60 min and 180 min after i.pl. melittin
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Fig. 2. Effects of the non-NMDA receptor antagonist, CNQX, on
the changes in mechanical threshold following intraplantar
injection of whole bee venom (WBYV, 0.1 mg/paw, ). WBV-induced
decrease in mechanical threshold was not changed after
intraplantar injection of CNQX (15 g, ©) 15 min before WBV
injection. However, the ability of WBV to reduce the mechanical
threshold was greatly attenuated following intrathecal admini-
stration of CNQX (10 #g) 15 min before (a) or 60 min after (o)
WBV injection. Arrow indicates the time when CNQX was
intrathecally administered in post-treatment experiment. *; p <
0.001, significant differences from the WBV-induced decrease in
mechanical threshold.
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Fig. 3. Intraplantar injection of melittin (50 pg/paw) dramatically
reduced mechanical threshold in the rat hind paw (e). The lowered
mechanical threshold was not influenced after intraplantar
administration of MK-801 (15 ug/paw) 15 min before injection of
melittin (o). However, melittin-induced reduction of mechanical
threshold was greatly attenuated following intrathecal pre- (&) or
post-treatment (o) of MK-801. Arrow indicates the time when
MK-801 was intrathecally administered in post-treatment
experiment *; p<0.01, **; p<0.001, significant differences from the
melittin-induced decrease in the mechanical threshold.
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Fig. 4, Melittin-induced (50 ¢ g/paw) reduction of mechanical thresh-
old () was significantly attenuated when non-NMDA receptor
antagonist (CNQX, 10 xg) was intrathecally administered 15 min
before (4) or 60 min after (o) intraplantar injection of melittin.
However, intraplantar injection of CNQX (15 ug/paw, o) did not
have any effect on the changes in mechanical threshold induced
by melittin (50 zg/paw). Arrow indicates the time when CNQX was
intrathecally administered in post-treatment experiment *; p<
0.01, **; p<0.001, significant differences from the melittin-induced
decrease in the mechanical threshold.

injection, respectively (Fig. 3).

The decreased PWT did not fully recover to the control
PWT (26 g) 24h after ipl. melittin injection. Melittin-
induced decrease of PWT was greatly attenuated after i.t.
pre-administration of NMDA receptor antagonist, MK-801
(10 g, n=9), at all time- points except 24 h after i.pl.
melittin injection (Fig. 3). PWT of the rat pre-treated with
i.t. MK-801 was significantly high (12.1+2.9 g), compared
to PWT of the control 10 min after i.pl. melittin injection,
and was fully recovered 6h after melittin injection. In 9 rats
which received i.t. administration of MK-801 (10 xg) 60 min
after i.pl. melittin injection, the decreased PWT rapidly
increased to 14.3+2.9 g and 22.4+2.0 g at 30 min and 120
min after i.t. post-treatment of MK-801. However, changes
in PWTs of the rats i.pl. injected with melittin only or i.pl.
administered with melittin and MK-801 were not signifi-
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Fig. 5. Intraplantar administration of low dose WBV (0.04 mg/paw,
®) induced the decrease in the mechanical thresholds which were
significantly attenuated by i.pl. pretreatment of MK-801(15 g, ©0)
and CNQX (15 g, a) without any inhibitory effect on the initial
nociception within 30 min after WBV injection. *; p<0.05, **; p<
0.01, ***; p<0.005, significant difference from the WBV-induced
decrease in the mechanical theshold.

cantly different from each other.

Fig. 4 shows that the data on the changes of PWTs
induced by i.pl. melittin injection were same as those used
in Fig. 3. The it. administered non-NMDA receptor
antagonist, CNQX (10 xg), strongly attenuated the ability
of melittin to reduce PWT. In the rats i.t. pre-treated with
CNQX (n=10), PWTs were significantly high, compared to
PWTs of the rats i.pl. injected with melittin alone at all
points except 24 h after melittin injection (Fig. 4, p<0.01
or 0.001). The decreased PWT fully recovered to the control
PWT (26 g) 6h after ipl. melittin injection in the rat
pretreated with CNQX. In the 9 rats post-treated with
CNQX, PWT was 14.8+2.5 g at 90 min after i.pl. melittin
injection thereafter, gradually increased to 24.9+0.7 g at
6h after i.pl. melittin injection (Fig. 4). In the rat injected
with i.pl. melittin, i.pl. pre-administration of CNQX did not
have any effect on the melittin- induced reduction of PWT.

Because i.pl. injection of more than 15 ;g of antagonists,
especially MK-801, caused side effect such as agitation, we
could not increase the dose of antagonists above 15 ug. In-
stead of increasing the dose of antagonist, we investigated
the effects of i.pl. injected MK-801 and CNQX (15 ug /paw)
on the nociceptive responses induced by a low dose of WBV
(0.04 mg/paw) and melittin (0.02 mg/paw). Intraplantar
injection of WBV (0.04 mg) strongly reduced PWTs which
were 1.9+0.4 g and 6.60.9 g at 10 min and 60 min after
WBV injection, respectively (Fig. 5, n=12). The reduced
PWT was recovered almost to the control level 24h after
WBYV injection. Intraplantar pre-injection of MK-801 (n=12)
or CNQX (n=11) did not have any significant effects on the
WBV-induced decreases of PWTs within 30 min after WBV
injection. However, in the rats pretreated with MK-801 and
CNQX, PWTs were significantly high compared to the rats
injected with WBV only at all time-points since 120 min
and 60 min after WBV injection, respectively (Fig. 5).

Low dose of melittin (0.02 mg/paw. i.pl.) also caused
strong and sustained decreases in PWTs which were 3.1+
0.6 g and 4.9+0.4 g at 10 min and 60 min after melittin
injection, respectively (Fig. 6, n=9). Intraplantar pre-injec-
tion of CNQX (15 ug/paw, n=13) significantly attenuated
the ability of melittin to reduce PWT at all time-points
except 24h after melittin injection. However, in the rats
pretreated with MK-801 (n=9), PWTs were significantly
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Fig. 6. Changes in the low dose melittin-induced (0.02 mg/paw, )
mechanical thresholds following i.pl. pre-injection of NMDA
receptor (MK-801,15 1g, o) and non-NMDA receptor (CNQX, 15 pg,
a) antagonists. Intraplantar injection of CNQX significantly
attenuated the ability of melittin to reduce the mechanical thresh-
old at all time-points. However, in the rat pre-treated with MK-801,
the mechanical thesholds were significantly high compared to
melittin-injected rats at the later part of observation period. *; p<
0.05, **; p<0.01, *** p<0.001, significant difference from the
melittin-induced decrease in the mechanical theshold.
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Fig. 7. Effects of NMDA and non-NMDA receptor antagonists on
whole bee venom (WBV)- (A) and melittin (MEL)-induced (B)
flinching behaviors. Intrathecal (i.t.) administration of MK-801 and
CNQX significantly suppressed flinchings induced by WBV and
melittin for the first 30 min. *; p<0.01, **; p<0.005, ***; p<0.001,
significant differences from the WBV- and melittin- induced
flinchings.

high, compared to the rats injected with melittin only at
all time-points since 60 min after WBV injection.
Flinching behaviors were not observed in the normal rat
without i.pl. injection of WBV and melittin. However, 1.pl.
administration of high dose WBV (0.1 mg/paw, n=13) and
melittin (0.05 mg /paw, n=12) greatly increased flinching
behaviors (87.9410.4/30 min and 76.1 +8.0/30 min, respec-
tively) which were very high immediately after admini-
stration of WBV and melittin and, thereafter, gradually
decreased (Fig. 7). In the rats pre-treated with i.t. MK-801
(n=10) or CNQX (n=9), WBV-induced flinchings signifi-
cantly decreased (Fig. 7A). After i.pl. pre-treatment of the
rats with MK-801 (n=7) or CNQX (n=8), there was a
tendency for ipl. WBV-induced flinchings to decrease,
however, these decreases were not significant. Intrathecal
pre-treatment of MK-801 (n=9) and CNQX (n=9) strongly
suppressed melittin-induced flinching behaviors (76.1+
8.0/30 min), which were decreased to 19+4.7/30 min and
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Fig. 8. Effects of intraplantarly administered NMDA and non-
NMDA receptor antagonists (15 ug/paw) on the low dose whole bee
venom (WBV, 0.04 mg/paw, A)- and melittin (MEL, 0.02 mg/paw,
B)-induced flinching behaviors. CNQX, but not MK-801, signi-
ficantly suppressed WBV- and melittin-induced flinchings. *; p<
0.001, significant differences from the melittin- and WBV-induced
flinchings.

21.7+5.1/30 min, respectively (Fig. 7B).

In the rats pre-treated with ipl. MK-801 (n=7), i.plL.
melittin injection caused a slight increase in flinchings
(82.8+11.9/30 min), compared to melittin-induced flinching
without pretreatment of MK-801. Intraplantar pre-admi-
nistration of CNQX (n=8) attenuated an increase in
melittin-induced flinchings, however, this decrease did not
reach the significant level.

Intraplantar injection of low doses of WBV (0.04 mg/paw,
n=10) and melittin (0.02 mg/paw, n=27) caused flinching
behaviors which were 65.6+3.4/30 min and 32.3+2.0/30
min, respectively (Fig. 8). After i.pl. pretreatment of rats
with MK-801 (15g/paw), WBV- (n=12) and melittin-induced
(n=8) flinchings were not significantly suppressed. However,
WBV- (n=11) and melittin-induced (n=11) flinchings were
reduced to almost one half of those induced by WBV or
melittin, following i.pl. pretreatment of CNQX (15 pug/paw).

DISCUSSION

The current behavioral study shows that spinal NMDA
and non-NMDA receptors positively contribute to the
development and maintenance of mechanical allodynia and
spontaneous flinchings by i.pl. injection of WBV and melit-
tin into the rat hindpaw, and that in general, peripheral
EAA receptors are involved in WBV- and melittin- induced
nociceptions at the late part of whole time-course. In the
present study, high dose WBV- (0,1 mg/paw) and melittin-
induced (0.05 mg/paw) nociceptions were not affected by
i.pl. injection of NMDA and non-NMDA receptor anta-
gonist. It is suggested that the dose of peripherally admi-
nistered MK-801 and CNQX (15 x«g) might not be high
enough to suppress the nociceptive responses induced by
high doses of WBV and melittin. However, we could not
administer highter dose of CNQX and especially MK-801,
than 15 ug because of side effects. Since antinociceptive
effects of drugs have inverse relationship to the intensity
of nociceptive responses (Luttinger, 1985), we investigated
the effects of i.pl. administered MK-801 and CNQX (15 ¢g)
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on the nociceptive responses induced by low dose WBV (0.04
mg/paw) and melittin (0.02 mg/paw). Although i.pl. admi-
nistration of CNQX attenuated low dose melittn-induced
decrease of PWT and suppressed low dose WBV- and
melittin-induced flinchings, MK-801 did not have any signi-
ficant effect on the WBV- and melittin-induced flinchings,
and attenuated the low dose WBV- and melittin- induced
decrease of PWT only 60-120 min after melittin and WBV
injection. The current results that EAA receptor antago-
nists, especially MK-801, had little or weak effects on the
initial nociceptive responses induced within 30 min after
WBYV or melittin injection are a little different from that
s.c. WBV-induced discharges of WDR neurons are strongly
suppressed by i.pl. administered MK-801, but not by CNQX
(You et al, 2002). However, the results of Chen et al.
(1999a) that preteatment of CNQX (i.pl.) suppressed WBV-
induced firing of WDR neurons are generally in line with
our results. One possible reason for this difference may be
due to the intensity of induced nociceptive responses or the
dose of WBV used, and the effects of i.pl. administered MK-
801 and CNQX can become more strong if the intensity of
nociceptive responses is further reduced by injecting very
low doses of WBV and melittin. The involvement of peri-
pheral EAA receptors in the nociceptive transmission is
further supported by the findings that hyperalgesia and
allodynia induced by i.pl. or inta-articular injection of EAAs
and formalin are significantly alleviated by i.pl. or inta-
articular administation of NMDA and non-NMDA receptor
antagonists (Zhou et al, 1996; Davidson et al, 1997; La-
wand, 1997).

Another peripheral mechanism by which WBV and
melittin induce nociceptive response is a sustained activa-
tion and/or sensitizaton of primary afferent fibers by in-
flammatory substances. WBV has pro-inflammatory subs-
tances such as histamine, mast cell degranulating peptide
and phospholipase A, and various pro-inflammatory subs-
tances are released when an inflammation is induced by
ipl. injection of WBV and melittin. These inflammatory
substances can activate and/or sensitize nociceptive affer-
ent fibers, resulting in a sustained increase of afferent
inputs to the spinal cord and resultant long -lasting
hyperalgesia (Habermehl, 1981; Calixto et al, 2003).

In the present study, WBV- and melittin-induced reduc-
tion of PWT and flinching behaviors were strongly sup-
pressed after i.t. pre- or post-administration of MK-801 and
CNQX. An involvement of spinal NMDA and non-NMDA
receptors in WBV- and melittin-induced nociception is in
agreement with the results obtained from the study in
which other pain models were used. In the behavioral and
electrophysiological studies, i.t. administration of NMDA
and non-NMDA receptor antagonists attenuates mechani-
cal and thermal hyperalgesia induced by cutaneous inflam-
mation and peripheral nerve injury, suggesting that spinal
EAA receptors are implicated in the nociceptive responses
‘with peripheral origins (Haley et al, 1990; Mao et al, 1992;
Ren et al, 1992; Neugebauer et al, 1993; Sluka et al, 1994).
Spinal NMDA- and non-NMDA receptors are known to be
involved in WBV-induced contralateral heat hyperalgesia
(Chen et al, 2000), and i.t. adminisiation of neurokinin 1/2
receptor antagonist, spantide, suppresses WBV-induced
flinchings and thermal hyperalgesla (Zheng & Chen, 2001).

WBYV- and melittin-induced nociceptive inputs can cause
the release of EAAs as well as other neurotransmitters such
as substance P and calcitonin gene-related peptide from the
central endings of nociceptive afferent fibers in the spinal

dorsal horn. These nociceptive neurctransmitters increase
Ca®" influx and formation of inositol-1,4,5- trisphosphate
(IP3), resulting in activation of protein kinase C (PKC) in
the nociceptive dorsal horn neurons (Sladeczek et al, 1985;
Mayer et al, 1987; Coderre, 1992; Mao et al, 1995). The
activation of PKC increases NMDA current (Chen & Mae
Huang, 1991), Ca®" influx (Yang & Tsien, 1993), neuronal
excitability (Manseau et al, 1998) and neurotransmittér
release (Barber & Vasko, 1996), which results in further
increase of PKC activity and stronger nociceptive res-
ponses. This positive feedback cycle can aggravate pain res-
ponses, and then hyperalgesia and allodynla can develop.
The spinal pro-nociceptive function of PKC has been demo-
nstrated in the bee venom test. Intrathecal pre- and post-
injections of PKC inhibitor, chelerythrine, dose-depen-
dently inhibit subcutaneous WBV-induced spontaneous
flinchings and contralateral hyperalgesia in conscious rat
(Li et al, 2000).

Bee venom also contains phospholipase A; (PLAj) which
is also located in superficial dorsal horn (Ong et al, 1999)
and catalyzes the conversion of phosphatidylcholine to
arachidonic acid (Coderre, 1992). Melittin by itself has an
ability to activate PLA; (Habermehl, 1981). These arachi-
donic acid products produced by catalytic action of PLA,
can activate and/or sensitize nociceptive neurons (Coderre,
1992). All these pro-nociceptive factors may act together
and cause a sustained pain.
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