DOI QR코드

DOI QR Code

Large Crack Model and Its Numerical Algorithm for Damage Analysis of Dynamically Loaded Structures

동하중을 받는 구조물의 손상해석을 위한 대형균열모형과 수치 알고리즘

  • 이지호 (동국대학교 토목환경공학과)
  • Published : 2005.12.31

Abstract

In this paper a constitutive model for large cracks in concrete and other brittle materials subject to dynamic and cyclic leading is presented. The suggested model is based on the plastic-damage model for cyclic leading. A numerical formulation based on the three-step return-mapping algorithm for the proposed large crack model is also present. The numerical examples show that the present algorithm works appropriately under dynamic leading and should be used in large crack problems to prevent excessive tensive plastic strain development causing unrealistic results.

본 논문에서는 기존 연속균열모형들이 대형균열 표현에서 소성변형을 과도하게 계산하는 문제점을 극복한 대형균열모형을 제안하였다. 또한 소성손상모형을 수정한 형태로 제안된 균열모형을 수치해석에 사용할 수 있도록 3단계 회귀매핑 알고리즘으로 구성된 알고리즘을 제시하였다. 전산해석 예제들을 통하여 제안된 균열손상 모형과 알고리즘이 동적 하중을 받는 구조물의 균열해석문제에서 과도한 소성변형을 억제하는 합리적인 결과를 도출함을 알 수 있었다.

Keywords

References

  1. ABAQUS, ABAQUS Theory Manual, ABAQUS Inc., RI., USA, 2005
  2. Lee, J. and Fenves, G.L., 'Plastic-Damage Model for Cyclic Loading of Concrete Structures,' Journal of Engineering Mechanics, ASCE, Vol.124, No.8, 1998, pp. 892-900 https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)
  3. Lubliner, J., Oliver, J., Oller, S. and Onate, E., 'A Plastic-damage Model for Concrete,' International Journal of Solids and Structures, Vol.25, No.3, 1989, pp. 299-326 https://doi.org/10.1016/0020-7683(89)90050-4
  4. Mazars, J. and Pijaudier-Cabot, G., 'Continuum Damage Theory-Application to Concrete,' Journal of Engineering Mechanics, ASCE, Vol.115, 1989, pp. 345-365 https://doi.org/10.1061/(ASCE)0733-9399(1989)115:2(345)
  5. Simo, J.C. and Ju, J.W., 'Stress and Strain Based Continuum Damage Models - I. Formulation,' International Journal of Solids and Structures, Vol.23, 1987, pp. 821-840 https://doi.org/10.1016/0020-7683(87)90083-7
  6. Oliver, J., 'A Consistent Characteristic Length of Smeared Cracking Models', International Journal for Numerical Methods in Engineering, Vol.28, 1989, pp. 461-474 https://doi.org/10.1002/nme.1620280214
  7. Simo, J.C. and Taylor, R.L., 'A Return Mapping Algorithm for Plane Stress Elastoplasticity,' International Journal for Numerical Method in Engineering, Vol.22, 1986, pp. 649-670 https://doi.org/10.1002/nme.1620220310
  8. Lee, J. and Fenves, G.L., 'A Return-mapping Algorithm for Plastic-damage Models: 3-D and Plane Stress Formulation,' International Journal for Numerical Methods in Engineering, Vol.50, 2001, pp. 487-506 https://doi.org/10.1002/1097-0207(20010120)50:2<487::AID-NME44>3.0.CO;2-N
  9. Taylor, R.L., FEAP: A Finite Element Analysis Program (Version 5.01 Manual), University of California at Berkeley, CA, USA, 1996
  10. Simo, J.C., 'Nonlinear Stability of Time-discrete Variational Problem of Evolution in Nonlinear Heat Conduction: Plasticity and Viscoplasticity,' Computer Method in Applied Mechanics and Engineering, Vol.88, 1991, pp. 111-131 https://doi.org/10.1016/0045-7825(91)90235-X
  11. Lee, J. and Fenves, G.L., 'A Plastic-Damage Concrete Model for Earthquake Analysis of Dams,' Earthquake Engineering Structural Dynamics, Vol.27, 1998, pp. 937-956 https://doi.org/10.1002/(SICI)1096-9845(199809)27:9<937::AID-EQE764>3.0.CO;2-5
  12. Chopra, A.K. and Chakrabarti, P., 'The Koyna Earthquake and Damage to Koyna Dam,' Bulletin of the Seismology Society of America, Vol.63, 1973, pp. 381-397