Design Parameters of Polymers for Tissue Engineering Applications

  • Published : 2005.08.31

Abstract

The loss or failure of an organ or tissue can occur because of accident or disease, for which tissue or organ transplantation is a generally accepted treatment. However, this approach is extremely limited due to donor shortage. Tissue engineering is a new and exciting strategy, in which patients who need a new organ or tissue are supplied with a synthetic organ or tissue. In this approach, tissues are engineered using a combination of the patient's own cells and a polymer scaffold. The polymer scaffold potentially mimics many roles of extracellular matrices in the body. Various polymers have been studied and utilized to date in tissue engineering approaches. However, no single polymer has been considered ideal for all types of tissues and approaches. This paper discusses the design parameters of those polymers potentially useful in tissue regeneration.

Keywords

References

  1. R. Langer and J. P. Vacanti, Science, 260, 920 (1993) https://doi.org/10.1126/science.8493529
  2. D. J. Mooney and A. G. Mikos, Sci. Am., 280, 60 (1999)
  3. K. Y. Lee and D. J. Mooney, Chem. Rev., 101, 1869 (2001) https://doi.org/10.1021/cr990410+
  4. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson, in Molecular Biology of the Cell, Garland Publishing, New York, 1994, p 971
  5. B. S. Kim and D. J. Mooney, TIBTECH, 16, 224 (1998) https://doi.org/10.1016/S0167-7799(98)01191-3
  6. J. J. Marler, J. Upton, R. Langer, and J. P. Vacanti, Adv. Drug Deliv. Rev., 33, 165 (1998) https://doi.org/10.1016/S0169-409X(98)00025-8
  7. B. Chevallay, N. Abdul-Malak, and D. Herbage, J. Biomed. Mater. Res., 49, 448 (1999) https://doi.org/10.1002/(SICI)1097-4636(20000315)49:4<448::AID-JBM3>3.0.CO;2-L
  8. M. Yamamoto, Y. Tabata, and Y. Ikada, J. Bioact. Compat. Polym., 14, 474 (1999).
  9. C. Perka, R.-S. Spitzer, K. Lindenhayn, M. Sittinger, and O. Schultz, J. Biomed. Mater. Res., 49, 305 (2000). https://doi.org/10.1002/(SICI)1097-4636(20000305)49:3<305::AID-JBM2>3.0.CO;2-9
  10. Q. Ye, G. Zund, P. Benedikt, S. Jockenhoevel, S. P. Hoerstrup, S, Sakyama, J. A. Hubbell, and M. Turina, Eur. J. Cardio- Thorac. Surg., 17, 587 (2000) https://doi.org/10.1016/S1010-7940(00)00373-0
  11. E. D. Grassl, T. R. Oegema, and R. T. Tranquillo, J. Biomed. Mater. Res., 66A, 550 (2003) https://doi.org/10.1002/jbm.a.10589
  12. Y. Ikari, K. Fujikawa, K. O. Yee, and S. M. Schwartz, J. Biol. Chem., 275, 12799 (2000) https://doi.org/10.1074/jbc.275.17.12799
  13. J. Meinhart, M. Fussenegger, and W. Hobling, Ann. Plast. Surg., 42, 673 (1999) https://doi.org/10.1097/00000637-199906000-00016
  14. O. Smidsrod and G. Skjak-Braek, Trends Biotech., 8, 71 (1990) https://doi.org/10.1016/0167-7799(90)90139-O
  15. P. Eiselt, K. Y. Lee, and D. J. Mooney, Macromolecules, 32, 5561 (1999) https://doi.org/10.1021/ma990514m
  16. J. A. Rowley and D. J. Mooney, J. Biomed. Mater. Res., 60, 217 (2002) https://doi.org/10.1002/jbm.1287
  17. H. J. Kong, E. Alsberg, D. Kaigler, K. Y. Lee, and D. J. Mooney, Adv. Mat., 16, 1917 (2004) https://doi.org/10.1002/adma.200400014
  18. K. Y. Lee, H. J. Kong, R. G. Larson, and D. J. Mooney, Adv. Mat., 15, 1828 (2003) https://doi.org/10.1002/adma.200390005
  19. H. Yura, M. Goto, H. Okazaki, K. Kobayashi, and T. Akaike, J. Biomed. Mater. Res., 29, 1557 (1995) https://doi.org/10.1002/jbm.820291212
  20. A. E. Elcin, Y. M. Elcin, and G. D. Pappas, Neurol. Res., 20, 648 (1998) https://doi.org/10.1080/01616412.1998.11740578
  21. D. K. Singh and A. R. Ray, J. Macromol. Sci.-Rev. Macromol. Chem. Phys., C40, 69 (2000)
  22. R. A. A. Muzzarelli, Carbohydr. Polym., 3, 53 (1983) https://doi.org/10.1016/0144-8617(83)90012-7
  23. K. Kurita, T. Kojima, Y. Nishiyama, and M. Shimojoh, Macromolecules, 33, 4711 (2000) https://doi.org/10.1021/ma992113c
  24. A. M. Afify, M. Stern, M. Guntenhoner, and R. Stern, Arch. Biochem. Biophys., 305, 434 (1993) https://doi.org/10.1006/abbi.1993.1443
  25. Y. S. Choi, S. R. Hong, Y. M. Lee, K. W. Song, M. H. Park, and Y. S. Nam, J. Biomed. Mater. Res., 48, 631 (1999) https://doi.org/10.1002/(SICI)1097-4636(1999)48:5<631::AID-JBM6>3.0.CO;2-Y
  26. F. Duranti, G. Salti, B. Bovani, M. Calandra, and M. L. Rosati, Dermatol. Surg., 24, 1317 (1998) https://doi.org/10.1016/S1076-0512(98)00151-4
  27. M. Radomsky, L. Swain, T. Aufdemorte, C. Fox, and J. Poser, J. Bone Mineral Res., 11, M667 (1996)
  28. H. S. Yoo, E. A. Lee, J. J. Yoon, and T. G. Park, Biomaterials, 26, 1925 (2005) https://doi.org/10.1016/j.biomaterials.2004.06.021
  29. L. S. Liu, A. Y. Thompson, M. A. Heidaran, J. W. Poser, and R. C. Spiro, Biomaterials, 20, 1097 (1999) https://doi.org/10.1016/S0142-9612(99)00006-X
  30. W. H. Wong and D. J. Mooney, in Synthetic Biodegradable Polymer Scaffolds, A. Atala and D. J. Mooney, Eds., Birkhauser Press, Boston, 1997, pp 49-80
  31. H. Lo, M. S. Ponticiello, and K. W. Leong, Tissue Eng., 1, 15 (1995) https://doi.org/10.1089/ten.1995.1.15
  32. K. Whang, C. H. Thomas, K. E. Healy, and G. Nuber, Polymer, 36, 837 (1995) https://doi.org/10.1016/0032-3861(95)93115-3
  33. L. E. Freed, G. Vunjak-Novakovic, R. J. Biron, D. B. Eagles, D. C. Lesnoy, S. K. Barlow, and R. Langer, Bio/Technology, 12, 689 (1994) https://doi.org/10.1038/nbt0794-689
  34. L. D. Shea, E. Smiley, J. Bonadio, and D. J. Mooney, Nature Biotechnol., 17, 551 (1999) https://doi.org/10.1038/9853
  35. B.-S. Kim and D. J. Mooney, J. Biomed. Mater. Res., 41, 322 (1998) https://doi.org/10.1002/(SICI)1097-4636(199808)41:2<322::AID-JBM18>3.0.CO;2-M
  36. S. I. Jeong, J. H. Kwon, J. I. Lim, S. W. Cho, Y. Jung, W. J. Sung, S. H. Kim, Y. H. Kim, Y. M. Lee, B. S. Kim, C. Y. Choi, and S. J. Kim, Biomaterials, 26, 1405 (2005) https://doi.org/10.1016/j.biomaterials.2004.04.036
  37. S. X. Lu and K. S. Anseth, J. Control. Rel., 57, 291 (1999) https://doi.org/10.1016/S0168-3659(98)00125-4
  38. M. V. Sefton, M. H. May, S. Lahooti, and J. E. Babensee, J. Control. Rel., 65, 173 (2000) https://doi.org/10.1016/S0168-3659(99)00234-5
  39. T. K. L. Meyvis, S. C. De Smedt, J. Demeester, and W. E. Hennink, Macromolecule, 33, 4717 (2000) https://doi.org/10.1021/ma992131u
  40. D. W. Lim, S. H. Choi, and T. G. Park, Macromol. Rapid Commun., 21, 464 (2000) https://doi.org/10.1002/(SICI)1521-3927(20000501)21:8<464::AID-MARC464>3.0.CO;2-#
  41. R. A. Stile, W. R. Burghardt, and K. E. Healy, Macromolecules, 32, 7370 (1999) https://doi.org/10.1021/ma990130w
  42. B. Vernon, A. Gutowska, S. W. Kim, and Y. H. Bae, Macromol. Symp., 109, 155 (1996)
  43. M. Heskins and J. E. Guillet, J. Macromol. Sci. Chem. Ed., A2, 1441 (1968)
  44. O. H. Kwon, A. Kikuchi, M. Yamato, Y. Sakurai, and T. Okano, J. Biomed. Mater. Res., 50, 82 (2000) https://doi.org/10.1002/(SICI)1097-4636(200004)50:1<82::AID-JBM12>3.0.CO;2-7
  45. K. M. Huh, J. Hashi, T. Ooya, and N. Yui, Macromol. Chem. Phys., 201, 613 (2000) https://doi.org/10.1002/(SICI)1521-3935(20000301)201:5<613::AID-MACP613>3.0.CO;2-I
  46. S. Zalipsky, Bioconjugate Chem., 6, 150 (1995) https://doi.org/10.1021/bc00032a002
  47. S. J. Sofia, V. Premnath, and E. W Merrill, Macromolecules, 31, 5059 (1998) https://doi.org/10.1021/ma971016l
  48. B. R. Lentz, Chem. Phys. Lipids, 73, 91 (1994) https://doi.org/10.1016/0009-3084(94)90176-7
  49. W. R. Gombotz and D. K. Pettit, Bioconjugate Chem., 6, 332 (1995) https://doi.org/10.1021/bc00034a002
  50. E. V. Batrakova, N. S. Meliknubarov, N. A. Fedoseev, T. Y. Dorodnich, V. Y. Alakhov, V. P. Chekhonin, I. R. Nazarova, and V. A. Kabanov, J. Control. Rel., 22, 141 (1992) https://doi.org/10.1016/0168-3659(92)90199-2
  51. A. Harada and K. Kataoka, Science, 283, 65 (1999) https://doi.org/10.1126/science.283.5398.65
  52. K. M. Huh and Y. H. Bae, Polymer, 40, 6147 (1999) https://doi.org/10.1016/S0032-3861(98)00822-2
  53. B. Jeong, Y. K. Choi, Y. H. Bae, G. Zentner, and S. W. Kim, J. Control. Rel., 62, 109 (1999) https://doi.org/10.1016/S0168-3659(99)00061-9
  54. C. A. Finch, Poly(vinyl alcohol): Properties and Applications, Wiley, London, 1973
  55. W. S. Dai and T. A. Barbari, J. Membrane Sci., 156, 67 (1999) https://doi.org/10.1016/S0376-7388(98)00330-5
  56. J. Bo, J. Appl. Polym. Sci., 46, 783 (1992) https://doi.org/10.1002/app.1992.070460505
  57. N. A. Peppas and S. R. Stauffer, J. Control. Rel., 16, 305 (1991) https://doi.org/10.1016/0168-3659(91)90007-Z
  58. G. Zheng-Qiu, X. Jiu-Mei, and Z. Xiang-Hong, Biomed. Mater. Eng., 8, 75 (1998)
  59. K. Burczak, E. Gamian, and A. Kochman, Biomaterials, 17, 2351 (1996) https://doi.org/10.1016/S0142-9612(96)00076-2
  60. T. Taguchi, A. Kishida, and M. Akashi, J. Biomater. Sci. Polym. Ed., 10, 331 (1999) https://doi.org/10.1163/156856299X00586
  61. M. Kawase, N. Miura, N. Kurikawa, K. Masuda, S. Higashiyama, K. Yagi, and T. Mizoguchi, Biol. Pharm. Bull., 22, 999 (1999) https://doi.org/10.1248/bpb.22.999
  62. K. E. Uhrich, S. M. Cannizzaro, R. Langer, and K. M. Shakesheff, Chem. Rev., 99, 3181 (1999) https://doi.org/10.1021/cr940351u
  63. H. R. Allcock, in Hydrophilic Polymers: Performance with Environmental Acceptance, J. E. Glass, Ed., American Chemical Society, Washington, DC, 1996, p. 3
  64. S. Cohen, M. C. Bano, K. B. Visscher, M. Chow, H. R. Allcock, and R. Langer, J. Am. Chem. Soc., 112, 7832 (1990) https://doi.org/10.1021/ja00177a074
  65. A. K. Andrianov and L. G. Payne, Adv. Drug Deliv. Rev., 31, 185 (1998) https://doi.org/10.1016/S0169-409X(97)00122-1
  66. C. T. Laurencin, S. F. El-Amin, S. E. Ibim, D. A. Willoughby, M. Attawia, H. R. Allcock, and A. A. Ambrosio, J. Biomed. Mater. Res., 30, 133 (1996)
  67. T. J. Deming, Nature, 390, 386 (1997) https://doi.org/10.1038/37084
  68. J. P. O'Brien, Trends Polym. Sci., 8, 228 (1993)
  69. W. A. Petka, J. L. Harden, K. P. McGrath, D. Wirtz, and D. A. Tirrell, Science, 281, 389 (1998) https://doi.org/10.1126/science.281.5379.998
  70. M. T. Krejchi, E. D. T. Atkins, M. J. Fournier, T. L. Mason, and D. A. Tirrell, J. Macromol. Sci.- Pure Appl. Chem., A33, 1389 (1996)
  71. W. A. Petka, J. L. Harden, K. P. McGrath, D. Wirtz, and D. A. Tirrell, Science, 281, 389 (1998) https://doi.org/10.1126/science.281.5379.998
  72. D. W. Urry, Angew. Chem. Int. Ed., 32, 819 (1993) https://doi.org/10.1002/anie.199308191
  73. A. Panitch, T. Yamaoka, M. J. Fournier, T. L. Mason, and D. A. Tirrell, Macromolecules, 32, 1701 (1999) https://doi.org/10.1021/ma980875m
  74. R. A. McMillan and V. P. Conticello, Macromolecules, 33, 4809 (2000) https://doi.org/10.1021/ma9921091
  75. J. E. Babensee, J. M. Anderson, L. V. McIntire, and A. G. Mikos, Adv. Drug Deliv. Rev., 33, 111 (1998) https://doi.org/10.1016/S0169-409X(98)00023-4
  76. B. Rihova, Adv. Drug Deliv. Rev., 42, 65 (2000) https://doi.org/10.1016/S0169-409X(00)00054-5
  77. R. O. Hynes, Cell, 69, 11(1992) https://doi.org/10.1016/0092-8674(92)90115-S
  78. K. Smentana, Biomaterials, 14, 1046 (1993) https://doi.org/10.1016/0142-9612(93)90203-E
  79. J. A. Rowley, G. M. Madlambayan, and D. J. Mooney, Biomaterials, 20, 45 (1999) https://doi.org/10.1016/S0142-9612(98)00107-0
  80. E. Alsberg, K. W. Anderson, A. Albeiruti, R. T. Franceschi, and D. J. Mooney, J. Dental Res., 80, 2025 (2001) https://doi.org/10.1177/00220345010800111501
  81. K. Y. Lee, E. Alsberg, S. Hsiong, W. Comisar, J. Linderman, R. Ziff, and D. Mooney, Nano Letters, 4, 1501 (2004) https://doi.org/10.1021/nl0493592
  82. S. Huang and D. E. Ingber, Nature Cell. Biol., 1, E131 (1999) https://doi.org/10.1038/13043
  83. K. Y. Lee, J. Rowley, E. Moy, K. H. Bouhadir, and D. J. Mooney, Macromolecules, 33, 4291 (2000) https://doi.org/10.1021/ma9921347
  84. L. D. Harris, B. S. Kim, and D. J. Mooney, J. Biomed. Mater. Res., 42, 396 (1998) https://doi.org/10.1002/(SICI)1097-4636(19981205)42:3<396::AID-JBM7>3.0.CO;2-E
  85. K. Y. Lee, K. H. Bouhadir, and D. J. Mooney, Macromolecules, 33, 97 (2000) https://doi.org/10.1021/ma991286z
  86. A. Al-Shamkhani and R. Duncan, J. Bioact. Compat. Polym., 10, 4 (1995) https://doi.org/10.1177/088391159501000102
  87. K. H. Bouhadir, K. Y. Lee, E. Alsberg, K. L. Damm, K. W. Anderson, and D. J. Mooney, Biotechnol. Prog., 17, 945 (2001) https://doi.org/10.1021/bp000129c
  88. K. H. Bouhadir, D. S. Hausman, and D. J. Mooney, Polymer, 40, 3575 (1999) https://doi.org/10.1016/S0032-3861(98)00550-3
  89. K. Y. Lee, E. Alsberg, and D. J. Mooney, J. Biomed. Mater. Res., 56, 228 (2001) https://doi.org/10.1002/1097-4636(200107)56:1<1::AID-JBM1024>3.0.CO;2-C
  90. J. E. Nor, J. Christensen, D. J. Mooney, and P. J. Polverini, Am. J. Pathology, 154, 375 (1999) https://doi.org/10.1016/S0002-9440(10)65284-4
  91. J. Bonadio, Adv. Drug Deliv. Rev., 44, 185 (2000) https://doi.org/10.1016/S0169-409X(00)00094-6
  92. M. E. Sheridan, L. D. Shea, M. C. Peters, and D. J. Mooney, J. Control. Rel., 64, 91 (2000) https://doi.org/10.1016/S0168-3659(99)00138-8
  93. M. C. Peters, B. C. Isenberg, J. A. Rowley, and D. J. Mooney, J. Biomat. Sci. Polym. Edn., 9, 1267 (1999) https://doi.org/10.1163/156856298X00389
  94. K. Y. Lee, M. C. Peters, and D. J. Mooney, J. Control. Rel., 87, 49 (2003) https://doi.org/10.1016/S0168-3659(02)00345-0
  95. K. Y. Lee, M. C. Peters, K. W. Anderson, and D. J. Mooney, Nature, 408, 998 (2000) https://doi.org/10.1038/35050141
  96. K. Y. Lee, M. C. Peters, and D. J. Mooney, Adv. Mater., 13, 837 (2001) https://doi.org/10.1002/1521-4095(200106)13:11<837::AID-ADMA837>3.0.CO;2-D
  97. R. Langer, Science, 249, 1527 (1992) https://doi.org/10.1126/science.2396104