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1. Introduction

Petri Nets (PNs) were named after Carl A Petri, who
created a net-like mathematical tool for the study of com-
munication with automata in 1962, They were developed to
meet the need in specifying process synchronization, asyn-
chronous events, concurrent operations, and conflicts or re-
source sharing for a variety of industrial automated systems
at the discrete event-level.

In any physical net, two basis elements were founded :
nodes and links. Both nodes and links play their own
roles. For example, forces could be transferred from one
end to another through nodes and links. A PNs divides no-
des into two kinds : aces and transitions. Places are used
to represent condition or status of a component in a
system. They are pictured by circles. Transition represents
the events or operations. They are pictured by empty rec-
tangles or solid bars. A PNs utilizes directed arcs to con-

nect from places to transitions or from transitions to
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places. Places, transitions, and directed arcs make a PNs a
directed graph, called the PNs structure. The dynamic is
introduced by allowing a place to hold either none or pos-
itive number of tokens pictured by small solid dots. These
dots could represent the number of resources or indicate
whether a condition is true or not in a place. When all the
input places hold enough number of tokens, an event mod-
eled by a transition can happen, called transition firing.
This firing changes the token distribution in the places, sig-
nifying the change of system states.

The development of man-made systems requires that
both functional and performance requirements be met. The
ordinary PNs do not include any concept of time. With
this class of nets, it is possible only to describe the logical
structure and behavior of the modeled system, but not its
evolution over time. Responding to the need for the tempo-
ral performance analysis of discrete-event systems, time has
been introduced into PNs in a variety of ways. There are
two fundamental types of timed PNs in the context of per-
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formance evaluation and scheduling. They are deterministic
timed PNs, and stochastic ones.

When time delays for operations in a concurrent
choice-free system are fixed, we can model the system as
a deterministic timed PNs. When time delays are modeled
as random variables, probabilistic distributions are added to
the timed PNs models for conflict resolution. Stochastic
timed PNs models are yielded. In such models, it has be-
come a convention to associate time delays with the tran-
sitions only. When the random variables are of general dis-
tribution or both deterministic and random variables are in-
volved, the resulting net models cannot be solved analyti-
cally for general cases. Thus simulation or approximation
methods are required. The Stochastic Petri Nets(SPN) in
which time delay for transition is assumed to be random
and exponentially distributed are called SPN. The SPN
models which allow for immediate transitions, i.e., with
zero time delay, are called Generalized Stochastic Petri
Nets(GSPN).

2. Analysis of Generalized Stochastic
Petri Nets(GSPN)

The existence of immediate transitions makes the analy-
sis of Generalized Stochastic Petri Nets(GSPN)s more com-
plicated than that of SPN. Immediate transitions produce
multiply simultancous events in the process that describe
the time behavior of a GSPN (due to a sequence of imme-
diate transition firings) and possibly an infinite number of
events in a finite-time interval (if such a sequence starts
and ends in the same marking). Such a process can be
characterized as a continuous-time stochastic point process
(SPP) with one-to-one correspondence between the markings
of the GSPN and the SPP states.

In order to ensure the existence of a unique steady-state
probability distribution for the marking process of a GSPN,
the following simplifying assumptions are made :

(1) The GSPN is bounded. That is, the reachability set is
finite.

(2) Firing rates do not depend on time parameters. This
ensures that the equivalent Markov chain is homo-
geneous.

(3) The GSPN model is proper and deadlock free. That
is, the initial marking is reachable with nonzero prob-

ability from any marking in the reachability set and
also there is no absorbing marking.

These assumptions further specify the nature of the SPP
that can thus be classified as a finite state space, and a
stationary (homogeneous), irreducible, and continuous-time
stochastic point process.

There are three methods for the analysis of GSPN mod-
els in the reference book. One of the methods chose for
applying flexible manufacturing system. This method is
called Embedded Markov Chain(EMC). This method is
based on identifying an embedded Markov chain with the
SPP for the evaluation of the steady-state probability dis-
tribution of the GSPN markings. To get a utilization of
machines, we follow the formula from (2.1) to (2.11) and
there are already given in the reference book.

To better understanding of EMC method, we will re-
iterate this formula again. The EMC of the marking proc-
ess comprises tangible marking as well as vanishing
markings. The transition probability matrix of this EMC
can be computed using the firing rates and the random
switches.

Let S = state space of the SPP, |S|=k,, S; = set of tan-
gible states in SPP, |Sj=k,, S, = set of vanishing states in
SPP, |S.|=ki, With S=S;US,, S$i1S»=2 and k&ktk..

Disregarding for the time being the concept of time, and
focusing attention on the set of states in which the process
is led because of a transition out of a given states, it is
observed that a stationary EMC can be recognized within
the SPP. The transition probability of the EMC can be
written as follows :

cD] [oo
U=A+B= +
oolle

The elements of matrix A will go to a vanishing state
(C) or to a tangible state (D) given that it is at a vanish-
ing state. And the elements of B will go to a vanishing

@.1)

state (E) or to a tangible state (F) given that the process
is in a tangible state. The transition probability matrix U=
[u‘ij] between tangible states only be computed as follows :

";/':fv“ze:rpr[’—’ﬂ i,jeT,rEV .................... (22)

where f; is the transition probability from tangible state i
to tangible state j, e is the transition probability from i to
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vanishing state r, and Pr[r—> represents the probability
that the SPP moves from the state r to the state j in an
arbitrary number of steps following a path through vanish-
ing state only.

Now we consider the computation of matrix Q. The ky,

power of matrix A can be written as

e ct c*'p
0 0

Each component of the upper of portion of the matrix
A" represents the probability of moving from any state 1€
Sy to any other state of the original SPP in exactly k

2.3)

steps, such that intermediate states can be of the vanishing
type only. The matrix G, defined as

& (2.4)

provides the probability of reaching any tangible state i
(€8:), moving from any vanishing state r(€S,), in no
more than k steps, visiting intermediate states of the van-
ishing type only.

h

.. li . . . .
The limit of the sum (-=%3 ~ exists, and it is finite.

The irreducibility property of the SPP ensures that the
spectral radium of the matrix C is less than one. This im-
plies that the limit of the sum

Whenever loops among vanishing states do not exist, a
suitable ordering of these states can be found that allows
writing C as an upper triangular matrix, so that there ex-
ists a value ko<cky such that

Ck = 0 for any k= (2.5)
and the previous infinite sum reduces to a sum of finite
number of terms. If instead such loops among vanishing
states exists, the infinite sum has the asymptotic value

; ¢ =i-cr (2.6)

These two possible forms of the same infinite sum can
be used to provide an explicit expression for the matrix
G:

G =[1-CI'D

2.7)

e

represents loops among vanishing states, whose elements
represent the probabilities that the SPP reach for the first
time a given tangible state, moving out of a given vanish-
ing state in no matter how many steps. We can thus con-
clude that an explicit expression for the desired total tran-
sition probability among any two tangible states is

U=F + EG™ (2.8)
Now we consider the steady state probability distribution.

Let Y = (y1, y2...ys) be a vector of real numbers with

s=ki. Then the solution of the system of linear equations

Y=Y~

2=l
i=1

(2.92)

(2.9b)

gives the stationary probabilities of the reduced EMC. y;
gives the relative number of visits to M; by the marking
process. To obtain the steady state probabilities of the
marking process, we then use the expression

yim,

= S
ny”’j
A

T,

i

(2.10)

for i = 1,2,....s, where i is the steady-state probability of
marking Mi in the marking process (proportion of time the
marking process spends in M;) and mi is the mean sojourn
time of the marking M;, which is given by

1

m, = 7
1eEM, )k (2.11)
machine and inspector queues: ype 1, Type 2, and

Repairable.

The inspection-time for each workpiece, regardless of
type or rework status, has an exponential distribution with
a minimum time of 2 minutes. Of the jobs inspected at
this station, 80 percent are classified as Good and depart
the system, 10 percent are classified as Reject and depart
the system, and 10 percent are classified as Repair and are
returned to the machine queue for rework. The same per-
centages apply to both types the inspection station will be
recycled through the machining station.
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3. Describing the Process

The following summary describes the process steps and
entity flow for this problem.

1. Create arriving jobs.

(28]

. Assign Job Type = 1 or 2, Status = 1, and Priority
= Job Type.

. Wait according to Priority for the machine to be idle.

. Seize the machine.

. Delay by the processing time.

. Release the machine for the next waiting entity, if
any.

. Wait according to Priority for the inspection station.

(= N T S Ve ]

[= B |

. Seize the inspector.

9. Delay by the inspection time.

10. Release the inspector for the next waiting entity, if any.
11. Branch with the following probabilities

11-1. 0.8 probability go to step 12(Go)

11-2. 0.1 probability go to step 13(Reject)

11-3. 0.1 probability go to step 14(Repair)

11-1, 11-2, and 11-3 can be described as follows : )
percents of parts are classified as Good and depart the sys-
tem, 10 percents are classified as Reject and leave the sys-
tem, and 10 percents are classified as Repair and are re-
turned to the machine queue for the rework.

4. Modeling and Analysis of Manufac-
turing System

Figure 1. shows the GSPN model of our manufacturing
system. The GSPN model has 17 places, 7 timed tran-
sitions  {ti, tytsto,tiztie,tis} and 10 immediate transitions.
The initial marking is Mo = (1000001100000
0 0 0 0)T, which will, for simplicity, be denoted as piprps
by specifying those places having a token in this paper.
There is a random switch comprising the transitions t2, t,
and ti, ti7 with the corresponding probabilities 0.3, 0.7,
0.1,and 0.9, respectively.

Graphically, timed transitions are drawn as thick bars,
and immediate transitions as thin bars. In the initial mark-
ing pipips, the exponentially timed transitions t; is enabled
and hence this is a tangible marking. When t1 fires, the
new marking is ps,psps, which is a vanishing marking as
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the immediate transition t; and t; are enabled in it. At this
stage, the random switch is invoked to choose the next
transition to fire. The evolution of the marking process
proceeds as described above and the reachability graph of
the GSPN model can be constructed in this way. In the
Figure 2. shows the reachability graph of GSPN model.
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<Figure 1> GSPN model of an FMS
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<Figure 2> Reachability graph of the GSPN model of

Figure 1.
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There are 7 tangible markings(bold nodes in figure) and
8 vanishing markings. The transition probability matrix of
the reduced EMC can be computed (6.9). The individual
transition probabilities are labeled on the directed arcs con-
necting the tangible markings.

Solving the linear system of (2.9b) gives
yo = 0310, y4 = 0.093, ys = 0.217,
ys = 0.093, yo = 0217, yp = 0.035,
yie = 0.035.

By (2.11), the mean sojourn times are
Mo=9, Myg=1 Ms=1,

Mg =2 Mg=2 My =1, My = 2.

Using (2.10), we obtain :

po = 0.7294, p, = 0.024, ps = 0.057,
Ps = 0.049, p= 0.113, P2 = 0.009,
p1s = 0.018.

From the steady state probabilitics, we can calculate some
performance indices of the system. For example,

s achine Utilization

M1 = Pr{M(p7) = 1} = p» + ps + pn
= 0.024 + 0.057 + 0.009 = 0.09
M2 = Pr{M(p8) = 1} = ps + ps + pu

0.049 + 0.113 + 0.018 = 0.18

s roughput rates of timed transitions
TR(t7)=ps*1=0.024, TR(ts)=ps*1=0.057,
TR(to)=p12*1=0.009, TR(t:3)=ps*0.5=0.0245,
TR(t14)=pe*0.5=0.056, TR(t15)=p14*0.5= 0.009,
TR(t1)=po*(1/9)= 0.081.

<Figure 3> Petri Nets Simulation (Simnet)

e

With EMC method, several results are obtained. In Figure
3. the manufacturing system is modeled with PNs software
Simnet. By running this software, machine utilization is
acquired.

5. Conclusion

This paper modeled manufacturing system with three
methods. First method is EMC, which is one of GSPN
method. By following the EMC method step by step, ma-
chine utilization was obtained. Second, modeling the system
with PNs software and get a solution. Lastly, popular sim-
ulation software ARENA was used to verify the previous
two method.

<Table 1> Utilization Result of comparison of EMC, PNs

and ARENA
EMC PNs ARENA
Machinel 0.09 0.088 0.093
Machine2 0.18 0.176 0.182

Fortunately, results of three methods are almost the
same. Results of utilization of machine 1 and machine 2
by three methods are obtained and compared in Table I.
For a PNs simulation, Simnet V. 1.37 was used and Arena
software was used to get a simulation result.

Petri nets recently emerged as a powerful tool and meth-
odology for the modeling, analysis, simulation, and per-
formance evaluation of manufacturing systems. This paper
presents the fundamental concepts of Petri nets. By apply-
ing Petri Nets analysis, we can show that when we apply
example in the SIMAN to Petri nets, it is reachable and
get the same answer as we calculate by following equa-
tions in the reference book.

The manufacturing system example in the SIMAN is al-
so can be done by Petri nets. Through the three methods,
EMC, PN simulation, and Arena, the same results were
obtained. With these results, we can conclude that model-
ing of manufacturing system to Petri nets was properly
used. In the manufacturing system, normal and triangular
distributions are commonly used. But, SPN supports only
exponential distribution; therefore, transformation from the
distribution to distribution was

normal the exponential

needed.
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Due to the random number generation, there is an insig-
nificant difference between the results of SIMAN and Petri
nets, and also there is some difference between Petri nets
modeling and SIMAN modeling when they modeling the
manufacturing system. Nevertheless, to compute the per-
formance of a SPN, it is necessary to generate all states to
obtain its underlying Markov process. It may not be fea-
sible to apply the method to large systems. As a result,
simulation is often used in real-world cases.
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