Determination of Insulin Signaling Pathways in Hepatocytes

  • Kim, Sang-Kyum (College of Pharmacy and Research Center for Transgenic Cloned Pigs, Chungnam National University)
  • Published : 2005.09.01

Abstract

Diabetes is a major cause of morbidity and mortality, and associated with a high risk of atherosclerosis, and liver, kidney, nerve and tissue damage. Defective insulin secretion in pancreas and/or insulin resistance in peripheral tissues is a central component of diabetes. It is well established that, regardless of the degree of muscle insulin resistance, glucose levels in diabetic and non-diabetic individuals are determined by the rate of hepatic glucose production. Moreover recently studies using liver-specific insulin receptor knockout mice show the paramount role of the liver in insulin resistance and diabetes. Insulin exerts a multifaceted and highly integrated series of actions via its intracellular signaling systems. The first major section of this review defines the major insulin-mediated signaling pathways including phosphatidylinositol 3-kinase and mitogen activated protein kinases. The second major section of the review presents a summary and evaluation of methods for determination of the role and function of signaling pathways, including methods for determination of kinase phosphorylation, the use of pharmacological inhibitors of kinase and dominant-negative kinase constructs, and the application of new RNA interference methods.

Keywords

References

  1. Abdelmegeed, M.A., Carruthers, N.J., Woodcroft, K.J., Kim, SK and Novak, R.F. (2005): Acetoacetate Induces cytochrome P450 (CYP) 2E1 protein and suppresses CYP2E1 mRNA in primary cultured rat hepatocytes. J. Pharmacol. Exp. Ther., (in press) https://doi.org/10.1124/jpet.105.084608
  2. Abdelmegeed, M.A., Kim, S.K., Woodcroft, K.J. and Novak, R.F. (2004): Acetoacetate activation of extracellular signal- regulated kinase 1/2 and p38 mitogen-activated protein kinase in primary cultured rat hepatocytes: role of oxidative stress. J. Pharmacol. Exp. Ther., 310, 728-736 https://doi.org/10.1124/jpet.104.066522
  3. Alessi, D.R, Andjelkovic, M., Caudwell, B., Cron, P, Morrice, N., Cohen, P. and Hemmings, B.A (1996): Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J., 15, 6541-6551
  4. Alessi, DR., Cuenda, A., Cohen, P., Dudley, D.T and Saltiel, A.R (1995): PO 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J. Biol. Chem., 270, 27489-27494 https://doi.org/10.1074/jbc.270.46.27489
  5. Amarzguioui, M., Holen, T, Babaie, E. and Prydz, H. (2003): Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res., 31, 589-595 https://doi.org/10.1093/nar/gkg147
  6. Bain, J., McLauchlan, H., Elliott, M. and Cohen, P. (2003): The specificities of protein kinase inhibitors: an update. Biochem. J, 371,199-204 https://doi.org/10.1042/BJ20021535
  7. Bennett, B.L., Sasaki, D.T., Murray, B.W, O'Leary, E.C., Sakata, S.T., Xu, W, Leisten, J.C., Motiwala, A., Pierce, S., Satoh, Y, Bhagwat, S.S., Manning, A.M. and Anderson, D.W. (2001): SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc. Natl. Acad. Sci. USA, 98, 13681-13686 https://doi.org/10.1073/pnas.251194298
  8. Blake, R.A, Broome, M.A, Liu, X., Wu, J., Gishizky, M., Sun, L. and Courtneidge, S.A (2000): SU6656, a selective src family kinase inhibitor, used to probe growth factor signaling. Mol. Cell BioI., 20, 9018-9027 https://doi.org/10.1128/MCB.20.23.9018-9027.2000
  9. Brummelkamp, T.R, Bernards, R and Agami, R. (2002): A system for stable expression of short interfering RNAs in mammalian cells. Science, 296, 550-553 https://doi.org/10.1126/science.1068999
  10. Cantley, L.C. (2002): The phosphoinositide 3-kinase pathway. Science, 296, 1655-1657 https://doi.org/10.1126/science.296.5573.1655
  11. Catling, A.D., Schaeffer, H.J., Reuter, C.W, Reddy, G.R and Weber, M.J. (1995): A proline-rich sequence unique to MEK1 and MEK2 is required for raf binding and regulates MEK function. Mol. Cell Biol., 15, 5214-5225 https://doi.org/10.1128/MCB.15.10.5214
  12. Chan, T.O., Rittenhouse, S.E. and Tsichlis PN. (1999): AKT/ PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu. Rev. Biochem., 68, 965-1014 https://doi.org/10.1146/annurev.biochem.68.1.965
  13. Cheatham, B. and Kahn, C.R (1992): Cysteine 647 in the insulin receptor is required for normal covalent interaction between alpha- and beta-subunits and signal transduction. J. Biol. Chem., 267, 7108-7115
  14. Cherrington, A.D. (1999): Banting Lecture 1997. Control of glucose uptake and release by the liver in vivo. Diabetes, 48, 1198-1214 https://doi.org/10.2337/diabetes.48.5.1198
  15. Chong, H., Vikis, H.G and Guan, K.L. (2003): Mechanisms of regulating the Raf kinase family. Cell Signal., 15,463-469 https://doi.org/10.1016/S0898-6568(02)00139-0
  16. Conus, N.M., Hemmings, BA and Pearson, RB. (1998): Differential regulation by calcium reveals distinct signaling requirements for the activation of Akt and p70S6k. J. Biol. Chem., 273, 4776-4782 https://doi.org/10.1074/jbc.273.8.4776
  17. Davies, S.P, Reddy, H., Caivano, M. and Cohen, P (2000): Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J, 351, 95-105 https://doi.org/10.1042/0264-6021:3510095
  18. Davis, P.D., Hill, C.H., Keech, E., Lawton, G, Nixon, J.S., Sedgwick, A.D., Wadsworth, J., Westmacott, D. and Wilkinson, S.E. (1989): Potent selective inhibitors of protein kinase C. FEBS Lett., 259, 61-63 https://doi.org/10.1016/0014-5793(89)81494-2
  19. Dufner, A, Andjelkovic, M., Burgering, B.M., Hemmings, B.A and Thomas, G (1999): Protein kinase B localization and activation differentially affect S6 kinase 1 activity and eukaryotic translation initiation factor 4E-binding protein 1 phosphorylation. Mol. Cell Biol., 19, 4525-4534 https://doi.org/10.1128/MCB.19.6.4525
  20. Dykxhoorn, D.M., Novina, C.D. and Sharp, P.A .(2003): Killing the messenger: short RNAs that silence gene expression. Nat. Rev. Mol. Cell Biol., 4, 457-467 https://doi.org/10.1038/nrm1129
  21. Elbashir, S.M., Harborth, J., Lendeckel, W, Yalcin, A, Weber, K. and Tuschl, T. (2001a): Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 411, 494-498 https://doi.org/10.1038/35078107
  22. Elbashir, S.M., Lendeckel, W. and Tuschl, T. (2001b): RNA interference is mediated by 21- and 22.-nucleotide RNAs. Genes Dev., 15, 188-200 https://doi.org/10.1101/gad.862301
  23. Fabbro, D., Parkinson, D. and MaUer, A. (2002): Protein tyrosine kinase inhibitors: new treatment modalities? Curr. Opin. Pharmacal., 2, 374-381 https://doi.org/10.1016/S1471-4892(02)00179-0
  24. Favata, M.F., Horiuchi, K.Y., Manos, E.J., Daulerio, A.J., Stradley, D.A., Feeser, W.S., Van Dyk, D.E., Pitts, W.J., Earl, R.A., Hobbs, F., Copeland, R.A, Magolda, R.L., Scherle, P.A. and Trzaskos, J.M. (1998): Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J. Biol. Chem., 273, 18623-18632 https://doi.org/10.1074/jbc.273.29.18623
  25. Fire, A, Xu, S., Montgomery, M.K., Kostas, SA, Driver, S.E. and Mello, C.C. (1998): Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806-811 https://doi.org/10.1038/35888
  26. Frantz, B., Klatt, T., Pang, M., Parsons, J., Rolando, A, Williams, H., Tocci, M.J., O'Keefe, S.J. and O'Neill, E.A (1998): The activation state of p38 mitogen-activated protein kinase determines the efficiency of ATP competition for pyridinylimidazole inhibitor binding. Biochemistry, 37, 13846-13853 https://doi.org/10.1021/bi980832y
  27. Grishok, A, Pasquinelli, A.E., Conte, D., Li, N., Parrish, S., Ha, I., Baillie, D.L., Fire, A., Ruvkun, G. and Mello, C.C. (2001): Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell, 106, 23-34 https://doi.org/10.1016/S0092-8674(01)00431-7
  28. Hagemann, C. and Blank, J.L. (2001): The ups and downs of MEK kinase interactions. Cell Signal., 13, 863-875 https://doi.org/10.1016/S0898-6568(01)00220-0
  29. Hanke, J.H, Gardner, J.P., Dow, RL., Changelian, P.S., Brissette, W.H., Weringer, E.J., Pollok, B.A. and Connelly, P.A. (1996): Discovery of a novel, potent, and Src familyselective tyrosine kinase inhibitor. Study of Lck- and FynTdependent T cell activation. J. Biol. Chem., 271, 695-701 https://doi.org/10.1074/jbc.271.2.695
  30. He, T.C., Zhou, S., da Costa, L.T., Yu, J., Kinzler, K.W and Vogelstein, B. (1998): A simplified system for generating recombinant adenoviruses. Proc. Natl. Acad. Sci. USA, .95, 2509-2514 https://doi.org/10.1073/pnas.95.5.2509
  31. House, C. and Kemp, B.E. (1987): Protein kinase C contains a pseudosubstrate prototope in its regulatory domain. Science, 238, 1726-1728 https://doi.org/10.1126/science.3686012
  32. Izzard, R.A., Jackson, S.P. and Smith, G.C. (1999): Competitive and noncompetitive inhibition of the DNA-dependent protein kinase. Cancer Res., 59, 2581-2586
  33. Jefferies, H.B., Fumagalli, S., Dennis, P.B., Reinhard, C., Pearson, R.B. and Thomas, G (1997): Rapamycin sup-presses 5'TOP mRNA translation through inhibition of p70s6k. EMBO J., 16, 3693-3704 https://doi.org/10.1093/emboj/16.12.3693
  34. Kao, A.W., Waters, S.B., Okada, S. and Pessin, J.E. (1997): Insulin stimulates the phosphorylation of the 66- and 52kilodalton Shc isoforms by distinct pathways. Endocrinology, 138, 2474-2480 https://doi.org/10.1210/en.138.6.2474
  35. Karihaloo, A., O'Rourke, D.A., Nickel, C., Spokes, K. and Cantley, L.G. (2001): Differential MAPK pathways utilized for HGF- and EGF-dependent renal epithelial morphogenesis. J. Biol. Chem., 276, 9166-9173 https://doi.org/10.1074/jbc.M009963200
  36. Kim, S.K., Woodcroft, K.J., Khodadadeh, S.S. and Novak, R.F. (2004a): Insulin signaling regulates gamma-glutamylcysteine ligase catalytic subunit expression in primary cultured rat hepatocytes. J. Pharmacol. Exp. Ther., 311, 99-108 https://doi.org/10.1124/jpet.104.070375
  37. Kim, S.K., Woodcroft, K.J. and Novak, RF. (2003b) Insulin and glucagon regulation of glutathione S-transferase expression in primary cultured rat hepatocytes. J. Pharmacol. Exp. Ther., 305, 353-361 https://doi.org/10.1124/jpet.102.045153
  38. Kim, S.K., Woodcroft, K.J. and Novak, R.F. (2004b): Insulin and growth factor signaling in Drug Metabolism and Transport (Lash, L.H., Ed.). Humana Press, Totowa, pp. 49-83
  39. Kim, S.K., Woodcroft, K.J., Kim, S.G and Novak, R.F. (2003a): Insulin and glucagon signaling in regulation of microsomal epoxide hydrolase expression in primary cultured rat hepatocytes. Drug. Metab. Dispos., 31, 1260-1268 https://doi.org/10.1124/dmd.31.10.1260
  40. Kim, S.K., Woodcroft, K.J., Oh, S.J., Abdelmegeed, M.A. and Novak, R.F. (2005): Role of mechanical and redox stress in activation of mitogen activated protein kinases in primary cultured rat hepatocytes. Biochem. Pharmacol., (in press) https://doi.org/10.1016/j.bcp.2005.07
  41. Kohn, A.D., Takeuchi, F. and Roth, R.A. (1996): Akt, a pleckstrin homology domain containing kinase, is activated primarily by phosphorylation. J. Biol. Chem., 271, 21920-21926 https://doi.org/10.1074/jbc.271.36.21920
  42. Kubicek, M., Pacher, M., Abraham, D., Podar, K., Eulitz, M. and Baccarini, M. (2002): Dephosphorylation of Ser-259 regulates Raf-1 membrane association. J. Biol. Chem., 277, 7913-7919 https://doi.org/10.1074/jbc.M108733200
  43. Kuo, C.J., Chung, J., Fiorentino, D.F, Flanagan, W.M., Blenis, J. and Crabtree, G.R. (1992): Rapamycin selectively inhibits interleukin-2 activation of p70 S6 kinase. Nature, 358,70-73 https://doi.org/10.1038/358070a0
  44. Kyriakis, J.M. and Avruch, J. (2001): Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev., 81, 807-869 https://doi.org/10.1152/physrev.2001.81.2.807
  45. Lee, N.S., Dohjima, T., Bauer, G, Li, H., Li, M.J., Ehsani, A, Salvaterra, P. and Rossi, J. (2002): Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat. Biotechnol., 20, 500-555 https://doi.org/10.1038/nbt0502-500
  46. Lewis, T.S., Shapiro, P.S. and Ahn, N.G (1998): Signal transduction through MAP kinase cascades. Adv. Cancer Res., 74,49-139 https://doi.org/10.1016/S0065-230X(08)60765-4
  47. Light, Y, Paterson, H. and Marais, R. (2002): 14-3-3 antagonizes Ras-mediated Raf-1 recruitment to the plasma membrane to maintain signaling fidelity. Mol. Cell Biol., 22, 4984-4996 https://doi.org/10.1128/MCB.22.14.4984-4996.2002
  48. Martiny-Baron, G, Kazanietz, M.G, Mischak, H., Blumberg, P.M., Kochs, G, Hug, H., Marme, D. and Schachtele, C. (1993): Selective inhibition of protein kinase C isozymes by the indolocarbazole Go 6976. J. Biol. Chem., 268, 9194-9197
  49. Mason, C.S., Springer, C.J., Cooper, RG, Superti-Furga, G, Marshall, C.J. and Marais, R. (1999): Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. EMBO J., 18, 2137-2148 https://doi.org/10.1093/emboj/18.8.2137
  50. McManus, M.T., Haines, B.B., Dillon, C.P., Whitehurst, C.E., van Parijs, L., Chen, J. and Sharp, PA (2002a): Small interfering RNA-mediated gene silencing in T lymphocytes. J. Immunol., 169, 5754-5760 https://doi.org/10.4049/jimmunol.169.10.5754
  51. McManus, M.T., Petersen, C.P., Haines, B.B., Chen, J. and Sharp, P.A .(2002b): Gene silencing using micro-RNA designed hairpins. RNA, 8, 842-850 https://doi.org/10.1017/S1355838202024032
  52. McManus, M.T. and Sharp, P.A .(2002): Gene silencing in mammals by small interfering RNAs. Nat. Rev. Genet., 3, 737-747 https://doi.org/10.1038/nrg908
  53. Mendez, R, Kollmorgen, G, White, M.F. and Rhoads, R.E. (1997): Requirement of protein kinase C zeta for stimulation of protein synthesis by insulin. Mol. Cell Biol., 17, 5184-5192 https://doi.org/10.1128/MCB.17.9.5184
  54. Michael, M.D., Kulkarni, R.N., Postic, C., Previs, S.F., Shulman, G.I. and Magnuson, M.A. (2000): Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Molecular. Cell, 6, 87-97 https://doi.org/10.1016/S1097-2765(00)00010-1
  55. Paddison, P.J., Caudy, AA and Hannon G.J. (2002): Stable suppression of gene expression by RNAi in mammalian cells. Proc. Natl. A cad. Sci. USA, 99, 1443-1448 https://doi.org/10.1073/pnas.032652399
  56. Romanelli, A, Martin, K.A., Toker, A. and Blenis, J. (1999): p70 S6 kinase is regulated by protein kinase Czeta and participates in a phosphoinositide 3-kinase-regulated signalling complex. Mol. Cell Biol., 19, 2921-2928 https://doi.org/10.1128/MCB.19.4.2921
  57. Ross, A.H., Baltimore, D. and Eisen, H.N. (1981): Phosphotyrosine-containing proteins isolated by affinity chromatography with antibodies to a synthetic hapten. Nature, 294, 654-656 https://doi.org/10.1038/294654a0
  58. Sasaoka, T. and Kobayashi, M. (2000): The functional significance of She in insulin signaling as a substrate of the insulin receptor. Endocr. J., 47, 373-381 https://doi.org/10.1507/endocrj.47.373
  59. Shields, J.M., Pruitt, K, McFall, A., Shaub, .A and Der, C.J. (2000): Understanding Ras: 'it ain't over 'til it's over'. Trends Cell Biol., 10, 147-154 https://doi.org/10.1016/S0962-8924(00)01740-2
  60. Standaert, M.L., Bandyopadhyay, G, Kanoh, Y, Sajan, M.P. and Farese, R.V .(2001): Insulin and PIP3 activate PKCzeta by mechanisms that are both dependent and independent of phosphorylation of activation loop (T 410) and autophosphorylation (T560) sites. Biochemistry, 40, 249-255 https://doi.org/10.1021/bi0018234
  61. Standaert, M.L., Bandyopadhyay, G., Perez, L., Price, D., Galloway, L., Poklepovic, A, Sajan, M.P., Cenni, V., Sirri, A, Moscat, J., Toker, A and Farese, R.V. (1999): Insulin activates protein kinases C-zeta and C-Iambda by an autophosphorylation-dependent mechanism and stimulates their translocation to GLUT4 vesicles and other membrane fractions in rat adipocytes. J. Biol. Chem., 274, 25308-25316 https://doi.org/10.1074/jbc.274.36.25308
  62. Stein, R.C. (2001): Prospects for phosphoinositide 3-kinase inhibition as a cancer treatment. Endocr. Relat. Cancer., 8, 237-248 https://doi.org/10.1677/erc.0.0080237
  63. Sui, G., Soohoo, C., Affarel, B., Gay, F, Shi, Y, Forrester, W.C. and Shi, Y.A. (2002): DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. USA, 99, 5515-5520 https://doi.org/10.1073/pnas.082117599
  64. Toledo, L.M., Lydon, N.B. and Elbaum, D. (1999): The structure-based design of ATP-site directed protein kinase inhibitors. Curr. Med. Chem., 6, 775-805
  65. Toullec, D., Pianetti, P., Coste, H., Bellevergue, P. and Grand-Perret, T., Ajakane, M., Baudet, v., Boissin, P., Boursier, E., Loriolle, F., et al. (1991): The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J. Biol. Chem., 266,15771-15781
  66. Tzivion, G., Luo, Z. and Avruch, J. (1998): A dimeric 14-3-3 protein is an essential cofactor for Raf kinase activity. Nature, 394, 88-92 https://doi.org/10.1038/27938
  67. Vanhaesebroeck, B. and Alessi, D.R. (2000): The PI3K-PDK1 connection: more than just a road to PKB. Biochem. J., 346, 561-576 https://doi.org/10.1042/0264-6021:3460561
  68. Vlahos, C.J., Matter, W.F, Hui, K.Y and Brown, R.F. (1994): A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J. Biol. Chem., 269, 5241-5248
  69. Wang, L., Gout, I. and Proud, C.G (2001): Cross-talk between the ERK and p70 S6 kinase (S6K) signaling pathways. MEK-dependent activation of S6K2 in cardiomyocytes. J. Biol. Chem., 276, 32670-32677 https://doi.org/10.1074/jbc.M102776200
  70. Williams, B.R. (1997): Role of the double-stranded RNA-activated protein kinase (PKR) in cell regulation. Biochem. Soc. Trans., 25, 509-513 https://doi.org/10.1042/bst0250509
  71. Woodcroft, K.J., Hafner, M.S. and Novak, R.F. (2002): Insulin signaling in the transcriptional and posttranscriptional regulation of CYP2E1 expression. Hepatology, 35, 263-273 https://doi.org/10.1053/jhep.2002.30691
  72. Yeh, P. and Perricaudet, M. (1997): Advances in adenoviral vectors: from genetic engineering to their biology. FASEB J., 11,615-623 https://doi.org/10.1096/fasebj.11.8.9240963
  73. Yu, J.Y., DeRuiter, S.L. and Turner DL. (2002): RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc. Natl. Acad. Sci. USA, 99, 6047-6052 https://doi.org/10.1073/pnas.092143499
  74. Zamore, P.D., Tuschl, T., Sharp, P.A and Bartel, D.P. (2000): RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 101, 25-33 https://doi.org/10.1016/S0092-8674(00)80620-0