Effect of Size Grading on Growth, Feed Efficiency and Survival in Olive Flounder (Paralichthys olivaceus)

동일연령군에서 크기 선별에 따른 넙치(Paralichthys olivaceus) 성장, 사료효율 및 생존율의 비교

  • Kim, Jong-Hyun (Fish Genetics and Breeding Research Center, National Fisheries Research and Development Institute) ;
  • Kim, Hyun-Chul (Fish Genetics and Breeding Research Center, National Fisheries Research and Development Institute) ;
  • Lee, Jeong-Ho (Fish Genetics and Breeding Research Center, National Fisheries Research and Development Institute) ;
  • Noh, Jae-Koo (Fish Genetics and Breeding Research Center, National Fisheries Research and Development Institute) ;
  • Lee, Mi-Sug (Fish Genetics and Breeding Research Center, National Fisheries Research and Development Institute) ;
  • Kim, Kyung-Kil (Fish Genetics and Breeding Research Center, National Fisheries Research and Development Institute)
  • 김종현 (국립수산과학원 어류육종연구센터) ;
  • 김현철 (국립수산과학원 어류육종연구센터) ;
  • 이정호 (국립수산과학원 어류육종연구센터) ;
  • 노재구 (국립수산과학원 어류육종연구센터) ;
  • 이미숙 (국립수산과학원 어류육종연구센터) ;
  • 김경길 (국립수산과학원 어류육종연구센터)
  • Published : 2005.08.25

Abstract

This study was conducted to evaluate the effects of size grading on growth, feed efficiency and survival of juvenile olive flounder. Juvenile flounder were divided into four groups by initial average size; Small group $(1.3{\pm}0.23g)$, medium group $(3.1{\pm}0.45g)$, large group $(4.9{\pm}0.57g)$ and ungraded group $(3.3{\pm}1.66g)$. Triplicate groups of 100 fish were reared over 8 weeks. In final body weight distribution, frequency of the small size flounder (10 g) was markedly higher in the ungraded group than in the small group. Specific growth rate, feed efficiency and survival in the ungraded group were significantly lower (P<0.05) than those in the pooled data of the othor three graded groups, although feed intake in the ungraded group was significantly higher (P<0.05) than that of the pooled data of the other three graded groups. These results show that the small flounder gained significantly faster growth and higher survival in the absence of the large flounder. Therefore, size grading seems to be an important and necessary operation to improve the growth and survival of juvenile olive flounder (1-5 g).

동일연령군의 넙치 치어를 개체 크기별 4개의 group (small group, 체중 $1.3{\pm}0.23g;$ medium group, 체중 $3.1{\pm}0.45g;$ large group, 체중 $4.9{\pm}0.57g;$ ungraded group, 체중 $3.3{\pm}1.66g$)으로 나누어 8주동안 사육하면서 크기 선별이 어류의 성장, 사료효율 및 생존율에 미치는 영향을 조사하였다. 실험종료시 체중의 분포에 따른 소형 개체(체중 10 g)의 빈도는 크기 선별한 small group에 비해 ungraded group에서 매우 높게 나타났다. 실험 전기간동안의 일일성장률은 small group 및 large group에서 각각 최고치 및 최저치를 보였으며, medium group과 선별 group (small group; medium group; large group)의 pooled data는 ungraded group에 비해 높은 수치의 일일성장률을 나타내었다. (P<0.05). 사료섭취율은 ungraded group이 medium group 및 선별 group의 pooled data에 비해 높았던 반면, 사료효율에 있어서는 ungraded group이 이들에 비해 낮게 나타났다(P<0.05). 그리고 ungraded group의 생존율은 93.3%로 99.3% 이상으로 나타난 다른 실험구들에 비해 유의적으로 낮게 나타났다(P<0.05). 결론적으로 크기가 작은 넙치는 큰 넙치가 없는 곳에서 유의하게 빠른 성장과 높은 생존율을 나타내었다. 따라서 크기 선별은 넙치 치어(체중 1-5 g)의 성장과 생존율을 향상시키기 위해서 중요한 작업이 될 수 있다.

Keywords

References

  1. Baardvik, B. M. and M. Jobling, 1990. Effect of size-sorting on biomass gain and individual growth rates in Arctic charr, Salvelinus alpinus L. Aquaculture, 90, 11--16 https://doi.org/10.1016/0044-8486(90)90278-U
  2. Brzeski, V. J. and R. W. Doyle, 1995. A test of an on-farm selection procedure for tilapia growth in Indonesia. Aquaculture, 137,219-230 https://doi.org/10.1016/0044-8486(95)01098-X
  3. Davis, K. B. and N. C. Parker, 1990. Physiological stress in striped bass: Effect of acclimation temperature. Aquaculture, . 91,349-358 https://doi.org/10.1016/0044-8486(90)90199-W
  4. Dou, S., R. Masuda, M. Tanaka and K. Tsukamoto, 2004. Size hierarchies affecting the social interactions and growth of juvenile Japanese flounder, Paralichthys olivaceus. Aquaculture, 233, 237-249 https://doi.org/10.1016/j.aquaculture.2003.09.054
  5. Dou, S., T. Seikai and K. Tsukamoto, 2000. Cannibalism in Japanese flounder juveniles, Paralichthys olivaceus, reared under controlled conditions. Aquaculture, 182, 149-159 https://doi.org/10.1016/S0044-8486(99)00256-2
  6. Doyle, R. W. and A. J. Talbot, 1986. Artificial selection on growth and correlated selection on competitive behaviour in fish. Can. J. Fish. Aquat. Sci., 43, 1059-1064 https://doi.org/10.1139/f86-132
  7. Gunnes, K., 1976. Effect of size grading young Atlantic salmon (Salmo salar) on subsequent growth. Aquaculture, 9, 381-386 https://doi.org/10.1016/0044-8486(76)90079-X
  8. Jobling, M., 1985. Physiological and social constraints on growth of fish with special reference to Arctic charr, Salvelinus alpinus L. Aquaculture, 44, 83-90 https://doi.org/10.1016/0044-8486(85)90011-0
  9. Jobling, M., 1995. Simple indices for the assessment of the influences of social environment on growth performance, exemplified by studies on Arctic charr. Aquacult. Int., 3, 60-65
  10. Jobling, M. and J. Koskela, 1996. Interindividual variations in feeding and growth in rainbow trout during restricted feeding and in a subsequent period of compensatory growth. J. Fish BioI., 49, 658-667 https://doi.org/10.1111/j.1095-8649.1996.tb00062.x
  11. Jobling, M. and T. G Reinsnes, 1987. Effect of sorting on size-rrequency distributions and growth of Arctic charr, Salvelinus alpinus L. Aquaculture, 60, 27-31 https://doi.org/10.1016/0044-8486(87)90355-3
  12. Kamstra, A, 1993. The effect of size grading on individual growth in eel, Anguilla anguilla, measured by individual marking. Aquaculture, 112,67-77 https://doi.org/10.1016/0044-8486(93)90159-V
  13. Kim, J. H., I. C. Bang, J. K. Cho and J. M. Baek, 2004. Effect of size grading on growth and sex ratio of parrot fish (Oplegnathus fasciatus). J. Kor. Fish. Soc., 37, 197-201
  14. Knights, B., 1987. Agonistic behaviour and growth in the European eel, Anguilla anguilla L., in relation to warm-water aquaculture. J. Fish BioI., 31, 265-276 https://doi.org/10.1111/j.1095-8649.1987.tb05230.x
  15. Lambert, Y. and J. D. Dutil, 2001. Food intake and growth of adult Atlantic cod (Gadus rnorhua L.) reared under different conditions of stocking density, feeding frequency and size-grading. Aquaculture, 192, 233-247 https://doi.org/10.1016/S0044-8486(00)00448-8
  16. Popper, D. M., O. Golden and Y. Shezifi, 1992. Size distribution ofjuvenile gilthead sea bream (Sparus aurata), practical aspects. Israeli J. Aquacult. Bamidgeh, 44, 147-148
  17. Saclauso, C. A, 1985. Interaction of growth with social behaviour in Tilapia zilli raised in three different temperatures. J. Fish BioI., 26, 331-337 https://doi.org/10.1111/j.1095-8649.1985.tb04271.x
  18. Sakakura, Y. and K. Tsukamoto, 2002. Onset and development of aggressive behavior in the early life stage ofJapanese flounder. Fish. Sci., 68, 854-861 https://doi.org/10.1046/j.1444-2906.2002.00503.x
  19. Stefansson, M. O., A K. Imsland, M. D. Jenssen, T. M. Jonassen, S. O. Stefansson and R. FitzGerald, 2000. The effect of different initial size distributions on the growth of Atlantic halibut. J. Fish BioI., 56, 826-836 https://doi.org/10.1111/j.1095-8649.2000.tb00875.x
  20. Sunde, L. M., A. K. Imsland, A Folkvord and S. O. Stefansson, 1998. Effects of size grading on growth and survival ofjuvenile turbot at two temperatures. Aquacult. Int., 6, 19-32 https://doi.org/10.1023/A:1009265602388
  21. Wallace, J. C. and A G Kolbeinshavn, 1988. The effect of size grading on subsequent growth in fingerling Arctic charr, Salvelinus alpinus (L). Aquaculture, 73, 97-100 https://doi.org/10.1016/0044-8486(88)90044-0
  22. Waring, C. P., R. M. Stagg and M. G Poxton, 1992. The effects of handling on flounder (Platichthys flesus L.) and Atlantic salmon (Salrna salar L.). J. Fish BioI., 41, 131-144 https://doi.org/10.1111/j.1095-8649.1992.tb03176.x