DOI QR코드

DOI QR Code

0.6 mAh All-Solid-State Thin Fim Battery Fabricated on Alumina Substrate

알루미나 기판상에 구현된 0.6mAh급 전고상 박막전지

  • Park, H.Y. (Microcell Center, Nuricell Inc.) ;
  • Nam, S.C. (Microcell Center, Nuricell Inc.) ;
  • Lim, Y.C. (Microcell Center, Nuricell Inc.) ;
  • Choi, K.G. (Microcell Center, Nuricell Inc.) ;
  • Lee, K.C. (Microcell Center, Nuricell Inc.) ;
  • Park, G.B. (Microcell Center, Nuricell Inc.) ;
  • Cho, S.B. (Advanced Technology Research Center, Agency for Defense Development)
  • 박호영 ((주)누리셀 마이크로셀 센터) ;
  • 남상철 ((주)누리셀 마이크로셀 센터) ;
  • 임영창 ((주)누리셀 마이크로셀 센터) ;
  • 최규길 ((주)누리셀 마이크로셀 센터) ;
  • 이기창 ((주)누리셀 마이크로셀 센터) ;
  • 박기백 ((주)누리셀 마이크로셀 센터) ;
  • 조성백 (국방과학연구소 기술연구본부)
  • Published : 2005.11.30

Abstract

Lithium cobalt oxide thin film cathode, having thickness of $2.9{\mu}m$ with area of $4cm^2$, was deposited on platinum patterned alumina substrate by radio frequency magnetron sputtering. Li/Co molar ratio, which is an important factor for battery performance, was measured as a function of argon working pressure and applied R.F. power. Constant current charge and discharge performances were characterized with high rate discharge and cycling behavior. Using AC impedance analysis, internal resistance of the thin film battery was measured and simulated by proposed equivalent circuit model.

알루미나 기판을 사용하여 백금 박막 전류 집전체상에 $2.9{\mu}m$ 두께 및 $4cm^2$의 전극면적을 갖는 $LiCoO_2$ 박막을 R.F. 마그네트론 스퍼터링법에 의해 증착하였으며, 아르곤 공정 압력 및 인가된 R.F. 전력량에 따른 Li/Co 몰 비 의존성에 대해 고찰하였다. 비정질계 고체전해질인 Lipon 및 Li 음극이 순차적으로 증착된 박막전지를 제조하여 정전류충, 방전 시험하였으며, 고율방전 특성 및 충, 방전 횟수에 따른 전지 용량 변화를 측정하였다. 교류임피던스를 통해 전지내부의 저항성분을 측정하였으며, 이에 대한 등가회로를 구성하여 시뮬레이션한 결과와 비교하였다.

Keywords

References

  1. J. B. Bates, G. R. Gruzalski, N. J. Dudney, C. F. Luck, X. -H. Yu, and S. D. Jones, Solid State Technol., 36, 59 (1993)
  2. J. B. Bates, N. J. Dudney, B. Neudecker, A. Ueda, and C. D. Evans, Solid State Ionics, 135, 33 (2000) https://doi.org/10.1016/S0167-2738(00)00327-1
  3. K. Kanehori, K. Matsumoto, K. Miyauci, and T. Kudo, Solid State Ionics, 9&10, 1445 (1983)
  4. A. Lavasseur, M. Kbala, P. Hagenmuller, G. Couturier, and Y. Danto, Solid State Ionics, 9&10, 1439 (1983)
  5. S. D. Jones and J. R. Akridge, Solid State Ionics, 86-88, 1291 (1996)
  6. J. B. Bates, N. J. Dudney, G. R. Gruzalski, R. A. Zuhr, A. Choudhury, and C. F. Luck, J. Power Sources, 43-44, 103 (1993)
  7. J. B. Bates, G. R. Gruzalski, N. J. Dudney, C. F. Luck, and X. Yu, Solid State Ionics, 70-71, 619 (1994) https://doi.org/10.1016/0167-2738(94)90383-2
  8. J. B. Bates, N. J. Dudney, D. C. Lubben, G. R. Gruzalski, B. S. Kwak, X. Yu, and R. A. Zuhr, J. Power Sources, 54, 58 (1995) https://doi.org/10.1016/0378-7753(94)02040-A
  9. J. B. Bates, N. J. Dudney, G. R. Gruzalski, R. A. Zuhr, A. Choudhury, and C. F. Luck, Solid State Ionics, 53-56, 647 (1992) https://doi.org/10.1016/0167-2738(92)90442-R
  10. US Patent 6,835,493
  11. N. J. Dudney, J. B. Bates, and B. J. Neudeckar, Encyclopedea of Materials: Science and Technology, Elsevier Science Ltd., Section 6.9, Article 32 (2001)
  12. B. Wang, J. B. Bates, F. X. Hart, B. C. Slaes, R. A. Zuhr, and J. D. robertson, J. Electrochem. Soc.,143, 3202 (1996)
  13. Y. I. Jang, B. J. Neudecker, and N. J. Dudney, Electrochem. Solid State Lett., 4, A74 (2001) https://doi.org/10.1149/1.1368717
  14. J. B. Bates, N. J. Dudney, and B. J. Neudecker, J. Electrochem. Soc., 147, 59 (2000) https://doi.org/10.1149/1.1393157
  15. 박호영, 임영창, 최규길, 이기창, 박기백, 권미연, 조성백, 남상철, 한국전기화학회지, 8, 37 (2005) https://doi.org/10.5229/JKES.2005.8.1.037
  16. J. N. Reimers and J. R. Dahn, J. Electrochem. Soc., 139, 2091 (1992) https://doi.org/10.1149/1.2221184
  17. T. Ohzuku and A. Ueda, J. Electrochem. Soc., 141, 2972 (1994)
  18. A. J. Berlinsky, W. G. Unruh, W. R. McKinnon, and R. R. Hearing, Solid State Commun., 31, 135 (1979) https://doi.org/10.1016/0038-1098(79)90421-6
  19. Y. I. Jang, B. J. Neudecker, and N. J. Dudney, Electrochem. SolidState Lett., 4, A74 (2001) https://doi.org/10.1149/1.1368717