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Abstract - A non-uniform 3-point ternary interpolatory subdivision scheme with variable subdivision weights is introduced. 
Its support is computed. The C° and C1 convergence andysis are presented. To elevate its controllability, a modified edition 
is proposed. For every initial control point on the initial control polygon a shape weight is introduced. These weights can be 
used to control the shape of the corresponding subdivision curve easity and purposefully. The role of the initial shape weight 
is analyzed theoretically. The application of the presented schemes in designing smooth interpolatory curves and surfaces is 
discussed. In contrast to most conventional interpolatory subdivision scheme, the presented subdivision schemes have better 
locality. They can be used to generate or Cl interpolatory subdivision curves or surfaces and control their shapes wholly 
or locally.
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L Introduction

In recent years subdivision schemes have been important 
because they provide an efficient way to describes curves, 
surfaces and other geometric objects. Subdivision schemes 
can be classified in approximating and interpolating 
schemes. Interpolation by using s니bdivision is an 
attractive feature in more than one way. First, the 
original control points defining the curve or surface are 
also points of the limit curve or surface, which allows 
one to control it in a more intuitive manner. Second, 
many algorithms can be considerably simplified, and 
many calculations can be performed “in place,^.

Most work in the area of interpolatory subdivision 
curve schemes has considered binary schemes with an 
even number of control points. Dyn, Levin and Gregory 
[7] described a 4-point binary interpolator subdivision 
scheme (see Fig. 1(a)), which they proved to be C1- 
continues. Cai [1, 2, 3] made this scheme applicable 
to the case of nonuniform control points, non-uniform 
subdivision and upgraded the scheme to the modified 4- 
point scheme which can interp이ate the endpoints. Jin [11] 
and K니ijt [13] presented a nonlinear and a nonuniform 4- 
point binaiy inteip이atoiy subdivision scheme respectively. 
Weissman [16] described a 6-point binary interpolatory 
subdivision scheme, Deslauriers and Dubuc [4] analyzed 
2N-point subdivision schemes derived from polynomial 
interp 이 ation.

While Hassan mainly focused on the ternary s니bdivision 

scheme which generates three new control points 
corresponding to each control point of previous 
s니bdivision level by subdivision rules. In [10] he 
introduced a 4-point temaiy interp이ating scheme, and in 
[8] he investigated ternary schemes with three control 
points. He proposed a 3-point ternary interpolating 
scheme (see Fig. 1(b)), whose mask was given by

where a and b are two parameters. Since the 
s니bdivision scheme is uniform and stationaiy, the 
generating function formalism can be 니sed to analyze 
its continuity properties. It is proved that when the two 
parameters a and b are kept within a proper range, it is 
C1-continuous. Furthermore for a = b = % its 
Holder exponent [9] is C1'46 - Because of the ternary 
property of the 3-point ternary interpolating subdivision 
scheme, we can have a quicker generation of C1 
subdivision curve by using it than by using 4-point 
binary one.

But from [8] we do not know the intuitionistic 
meanings of the two parameters a and b and how the 
parameters affect the shape of the s니bdivision curve, 
which limits the application of the s니bdivision scheme 
in a way.

The most famous binary interpolatory subdivision 
surface scheme is the butterfly scheme for triangular 
meshes proposed in [6]. This scheme is a generalization 
of the 4-point binary curve subdivision scheme, and was 
subsequently improved in [17]. Kobbelt [12] described 
a C1 binary interpolatory scheme for quadrilateral 
meshes with arbitraiy topology. Labisk [14] introduced 
an interpolatory -s니bdivision scheme. Dodgson [5]
considered the constmction of a temaiy interpolating
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(b) Three new points are generated by three old ones

Fig. 1. Generation of new points in the process of the 4-point binary (a) and the 3-point ternary interpolatory subdivision (b), where new 
points are marked by solid dots, and the old ones are marked by hollow squares.

(a) Two new points are generated by four old ones

scheme for the triangular mesh, but the contin니ity of 
the limit surface is not known.

With the observation that smooth interpolatory 
subdivision algorithm, which has good controllability is 
needed in many practical problems, in this paper, we 
focus on the construction of a C} ternary interpolatoiy 
subdivision scheme with good controllability.

Based on the scheme in [8] we first propose a non- 
니niform and non-stationaiy 3-point temaiy interpolatoiy 
subdivision curve scheme with variable subdivision 
weights which have distinct geometric meaning. The 
sufficient conditions of the uniform convergence and 
C'-continuity of the subdivision scheme are analyzed 
and proved. To improve the controllability of the 
subdivision scheme, we introduce a modified non- 
uniform 3-point ternary interpolatory subdivision 
scheme. For every initial control point on the initial 
control poly영on a shape weight is introduced. When 
the subdivision is going on, we refine the control 
polygon and the weights simultaneously and recursively. 
The initial shape weights can be used to control the 
shape of the subdivision curve. The role of initial 
weight is analyzed theoretically and is demonstrated by 
a few examples. Then the application of the non- 
uniform 3-point temaiy interpolatory subdivision 
schemes to the design of smooth c니rve and s니rface is 
discussed. Using our new schemes one can model or 
C} interpolatoiy subdivision curves and surfaces and 
control their shapes wholly or locally.

2. Non-uniform 3-point Ternary 
Subdivision Scheme

Given the set of initial control points P° 티 玲 c 史尴} , 

let Pk= {P：}；纣 be the set of control points at level k 
(k>G, k& Z), define {P广'}當广 recursively by the 
following subdivision rule:

旳==w；P《i+(：-2祐)矽+(10片)P：+1，0<j<3kn,

<旳;1 =貯, 0勻* 3板

P粕=侦点此+(扫”河+w：P當,。心",
⑴

where via is a variable subdivision weight with distinct 
geometric meaning (see Fig. 2). In Fig. 2 new points 
are marked by black solid dots, where a = P%i+P"i 
-2Py, b=P"—P^ c=P^+i-P^. Theoretically all the 
subdivision weights 咁 s can be chosen arbitrarily, so 
this scheme is non-uniform and non-stationary.

3. Support of the Non-uniform 3-point 
Ternary Subdivision Scheme

In this section we calculate the support for the ab。디e 
subdivision scheme before we do the convergence 
analysis that follows. We consider the limit of the 
above subdivision scheme with initial control points set

(pJgR2|Po=(O, 1), P；=。, 0),j=±l,±2,±3,...},

where the point P*  at 0 is the only control point with 
non-zero y-ordinate. The subdivision curve after fb니r 
subdivision steps with 机扌三!，企。are illustrated in 
Fig. 3, where the initial control points are marked by 
solid dots.

At the first subdivision step, we see that the control 
points P+4 at are the furthest control points with 
non-zero y-ordinate. At the second s니bdivision step, we 
see that the control points P|16 at ±3(1+：) are the 
furthest control points with non-zero y-ordinate. By

Fig. 3. Resul^ofthe 3-point ternary scheme after four subdivision 
steps with 吗 三
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recursive analysis we know that after k subdivision 
steps the furthest control points (where xk = 3Q妇 

+1)+1, x0 = 0) with non-zero y-ordinate will be at ±£ 
I 1 +-!-+-+ , hence the total support is
k 3 32 3宀丿

2 x —[ 1 +-+—H------—I—) = 2
戒3 32 3口 丿

8  
z

/=l

4
 - 3

4
 - 3 1

 - 3

This support compares favourably with the 가-point 
binary scheme having a support of 6 and the 4-point 
ternary scheme having a support of 5. So the subdi­
vision scheme proposed in this paper has a smaller 
support and has better locality.

4. Convergence Analysis

To study the convergence property of the above 
subdivision algorithm and the smooth property of the 
limit curve, a proper parametrization of the subdivision 
curve should be introduced. Similar to the dyadic 
parametrization fbr a binary s니bdivision algorithm, 
here we let Pj be the values corresponding to 扌.The 
analysis of the subdivision scheme can be reduced to 
the convergence and continuity of each component of 
the generated curve. Since each component is a scalar 
function generated by the same subdivision scheme, it 
is sufficient to analyze control points in R. To get the 
sufficient conditions fbr this subdivision scheme to be 
uniformly convergent and C1 we first introduce the 
following lemmas.

Lemina 1. Let

gi(x)=|x|+ , g2(x, y)= ^-X +|l-x-y|+ \~y

叫= "y)£W，ER,g。,

1 2then fbr -<x<-, g](x)<l, and for (x, y) e Z)o, g2(x^) 
<1. 6 3 

be the values corresponding to (-1 <j< 3k+i 刀 + 1, 
k>Q\ f：*'  are defined by 3 +

£二=w£沾+弓-2寸就+"《日)當,0<j<3kn,

%尸=於0匀曷板

月"=(M号)珞矿F簡,0W/V3板

2
 - 3
 

<-;<
1
 - 6Then for

a function fe 이such that

3kn + 1, fc>0, there exists

佔k>Q.

Proof. Let fk be the piecewise linear interpolation of
3妇+]

{fj }丿=_1 . It is clear that the maximal error between the 

functions fk and fk+x can be attained at the points

and ,and its value is

产(矛)-广(笋)=那；-披+2於) 

=卜枷富*)+"《一救珞*).

Let ||*L  denote the maximum norm on [0, n\. Then fbr

lfk+i~fk\^=maK/“("""《max以宀矿|.

<j<3kH

then for
1
 - 3

2
- 9

Lemma 2. Let

gQ, j)=|2-6x|+|3j-l|, g4Cv)=|6^-l|,

(X. y)eDi，g3(x,y)<l, g3(y, x)<l, and for 

g4(y)<i・

By estimating \ fj+x-fjk\, we can obtain 

max I以*|双  m弋 以
-\<j<3 n -\<j<3 n

(2)

(3)

where M& — max

k-\

By computing we can find the two Lemmas are true. 
Here we will not give the details.

Theorem 1. Given the initial data let fk+] 

Let Wj~x =x, w* ： =y, based on Lemma 1 we can obtain 
that for (x,j)eZ)0,

M = 点)짜) 抠心)，g©)，g2(W，)} < 1- (4)
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By (2), (3) and (4), we finally get the sequence of 
continuous functions {fk} is a Cauchy sequence, so 
there exists a contin니ous function /g C[0,7?] such that

Umfk=f. 
k—E

This complete the proof since obviously fm 
for all 0</'<3 n and any m>k.

Theorem 2. For 羞丿=一1,3* 〃+l, *스0, 

the limit function /in Theorem 1 is C} in the interval 
[0, 끼.

Proof. Consider the divided differences

广）,—1匀芸板

and let dk be the piecewise linear interpolation of 

{dj}j=_x. It is easy to note that the maximal error bet­

ween the functions dk and dk+x is attained at the points

• 3*  리〃
< T苛.n' Similar to the proof of Theorem 1, we can 

get for |<MA<i,j=-l, 0,..., 3爲+1,

-洲8= m시#%)一决(*  max 加一用. (5)

By estimating Igf—예, we can obtain

max 区]—예VM max |席一舟(6) 

where M\ = max {|2-6^尸|十|3时7：-1|, |3u^-1-l| 

+〔2-6疝% |6或]'-1|}. Let id广'=x，福based 

on Lemma 2 we can obtain that for (x,j)eDb

M、= max {g3(x,y),g3(E),g4(y)}<!- (7)
(x,y)S[

By (5), (6) and (7), we finally get the seq니ence of 
contin나ous functions {dk} is a Cauchy sequence, so 
there exists a continuous function d such that

lim dk=d. 
A-->+oo

It remains to show that d=仁 where f is the limit 
function of the process. Consider the Bernstein poly­
nomial for the data on [0, n]

後)=歸知싀言 

丿=0

then its derivative is the Bernstein polynomial for the 
data {dj}

3n-\ 
b'k(x)= £ C盘I

丿=0
From the 니nifbrm convergence of the Bernstein 

polynomials we can get

lim bk=f, lim b'k=d, 
比 T+cQ

hence /g C‘[0,끼 .

From Theorem 1 and Theorem 2 we can conclude 
that the non-uniform 3-point ternary interp이atory 
subdivision scheme proposed in this paper can be C° or 
C1 when all the weights u% s are kept in a certain range 
respectively. But it is a little hard to know how to have 
a direct operation to control the shape of the corre­
sponding subdivision curve by using this scheme, 
because the weights are somewhat arbitrary and free. 
To increase its controllability, we propose a modified 
non-uniform 3-point ternary interpolatory subdivision 
scheme.

5. Modified Non-uniform 3-point 
Ternary Subdivision Scheme

In this section we alter the subdivision scheme (1). 
We introduce a shape weight for every initial control 
point on the initial control polygon. When the 
subdivision is going on, we refine the control polygon 
and the weights simultaneously and recursively. The 
initial shape weights can be used to control the shape 
of the subdivision curve. ,0 o n+1

Given the set of initial weights w = {吗}尸_[ corre­
sponding to the set of initial control points P° = 
{P^gR let ?*={矽} 《" be the set of c이甲*ol  
points at level Z새20MuZ), define {!*"} ；=_广 

recursively by (1), where the shape weights w” 丿=一1, 
0,1..., 3^+1 at level k(k>\,虹Z) are refined recur­
sively by the following subdivision rule:

加；一1=娅二 + (]二"_")1《一'+1시《打,

v = \ Q<j<^~Xn.

福丿+1 = i邛归十(1-當,d<j<3k~xn.

(8)

Here 卩,v are two parameters introduced to improve the 
local and fine controllability of the shape of the
s니bdivision curve.
Remark: For Wj
Theorem 1 we can

we have 诚三!,*21.  From 
conclude that the limit curve is(丸

which is exactly the initial control polygon.
Based on Theorem 1 and Theorem 2, we have the 

following theorem.
Theorem 3. For arbitrary (//,v) {(/7,v)|0<//< 1,
0<v<l, ^+v<l, //eR, veR}, if the initial weights sati- 

sfy ^<^<2, 0,..., 1, the limit functionf will 
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be C° at least in the interval [0, n], and especially, if

j=-l, 0,..., w+1, the limit functionf will be

C1 in the interval [0, n\.
From Theorem 3 we know that we can model C，or 

C1 interpolatory curves and control their shapes by 
choosing the initial weights iq s of the control points 
and parameters //,v in a proper range.

To analyze the controllability of the presented 
scheme, we need to discuss how the shape weights 
affect the shape of the limit curve.

6. The Role of Shape Weight

In this section we analyze the effect of the shape 
weight Wj on the sh萨 of subdivision curve near the 
initial control point Pj . For simplicity we only need to 
analyze that of weight w0 on the shape of subdivision 
curve near the initial control point P?.

From subdivision rules (1) and (8) we have 三机%

p+wM

Let U.=PJP% Vqpjp% W广肮一吧，

thenU^= V^+W^and U奸(P；-P"), 

v奸 1 = g-祚)wgMvq：-浦)(I"-vq+裁狄

，
犬

V
-

7K 
一
 o

Since、％ = P；—P% its special solution is

where 
1
 - 2

the shape of subdivision c니rve near the control points 
Po=Po at any subdivision level k. From (9) and (10), 
we have

Case 1: |<Wq<-. Since 0<2wq--<-, the two points 
6 3 3 3

P1? P_j are always out of the triangle generated by the 

three points P*,  P；, P： (see Fig. 4). And if 商 g
'6 3丿 

is decreasing, the two points Pp P_] will deviate from 

the edges P：P： and respectively and gradually. 
Thus the local limit curve segment near the point P： 
will tend to be flat (see Fig. 7(a), in this figure the 
subdivision curve tends to be flat around the control 
point P3 (the middle one) compared with Fig. 7(b)). 

On the other side when 就 is increasing, the two 

points P：, P\ will approximate the edges P； P： and 

Po P?i respectively. Thus the local limit curve segment 
near the point Pq will locally bend more and more (see 
Fig.7(b)).° 1 * k

Case 2: w〔)— § , m this case the two joints P” are 
always on the edges P°P[ and Pg P°] respectively. 
Th니s the local limit curve segment near the point P： 
will be the initial control linear segment itself (see 
Fig. 8).

1 o 2 . o o 11
Case 3: -<w0<-. Since ^坦厂示〉§，the two points 
Pi，P、are always in the triangfe generated by the 
three points p% p0 p0 (see Fig. 5). And when e 
(르) is increasing, the two points Pf, P% will deviate 

from the edges and P； P、respectively and 
gradually. Thus the local limit curve segment near the 
point Po between the point P、and P： will have more

Similarly we have difference equation:

Wz -(2w円珥=(扣伽疑

Since W0 = Pq—P^1, its special solution is

w质-C(2商一9 +c£) . (10)

Now we can depict the effect of weight w*  三 on
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and more inflexions as viewed from the whole curve. 
In fact in this case the limit curve will be fractal-like 
curve.

7. Application of the Non-uniform 3-point 
Scheme to Curve Modeling

The presented subdivision schemes can be used for 
the design of a Cl or interpolatory curve that 
interpolates a set of control points {Po, Pk Prt). In 
the case of open curves, we need to supply two 
additional control points P?i and P^+1, which affect 
the behavior of the curve near its end points P； and 
P?, In the case of a closed curve, we only need to let 
P*  = P*  and P：+i = P% .

Furthermore, it can be used to control the shapes of 
the interpolatory subdivision curves freely. We can 
control the shapes of curves to a great extent by 
adjusting the initial control points. In the case of given 
control points, we can control them by adjusting the 
weights and the parameters.

We may have an entire control of them by setting 
Wj=w (constant), then we will control them macro- 
cosmically by choosing the val니e of w. Fig. 6 shows an 
example of closed interpolatory curves after four 
subdivision steps. The set of initial control points is

{(一 l,0),(0,?)(l,0),(l, 一 1),(3，一l),(3,l),(0,§( 一 3,1),

(-3-1X-1-1)}.

In Fig. 6 the control polygon is drawn by a dash-dotted 
line, the smooth curve obtained by our scheme with

5 u18 by
1 

w = -
4

is marked by a full line and that with w = 

a dashed line. From Theorem 3 we know that in both 
cases the limit curves will be C1.

The more important thing is that we can have a local 
control of them easily and efficiently. For example, if 
we want to control the shapes of the curves near a 
specified control point Pz , we can achieve this by 
adj니sting the corresponding weight and selecting 
parameters

The following two examples show the curves applied
(1) and (8) to the same control polygon after five 
subdivision steps respectively. The control polygons 
are drawn by dashed lines, and the subdivision curves

Fig. 7. The effect of the weight w； on the subdivision curve 
segment near the control point P3 (the middle one).

are drawn by foil lines.
Fig. 7 shows the results of the adjusting the weight 

W3 corresponding to the control point is P? (the 

middle one) to control the shapes of the open curves 
locally. The set of initial control points is ((-1,-1),

0),(-l,1) (0,3),(l,l)，G，0)(l,-1)}, the two addi­

tional control points are and . In Fig. 7(a)

we specify the set of initial weights 1/= { 拓,보,료’

1
 - 4

1
 조

，

1
 조

・
, while in Fig. 7(b) we specify w

1
 - 4

1
 고

，

1
 

一
/

아

1
 조

，

1
 - 4

1
 

广
一아

1
 - 4

1
 초
. .Tn both cases we let // = v = 0, so from 

Theorem 3，we know that both limit curves will be Cl.
Fig. 8 shows the results of the fine control of the shapes 

of the curves near a control point by selecting parameters 
when the set of initial weights w° is given. Fig. 8(a) and 

(b) show two open curves. The set of initial control points is 
{(-3,4)(-1,4),(-2,5),(0,7),(2,5)(1,4)(3,4)},and the ^vo 
additional control points are "4 7) and (4 . In Fig.

8(a) and Fig. 8(b) we specify w° = 

but in Fig. 8(a) we set //=v = 0, while in Fig. 8(b) we
2 1

set v=-. From Theorem 3 we know that in both 
尸3 4

cases the limit curves will be C°. Fig. 8(c) and (d) show
two closed curves. The set of initial control points is 
『1 冒，(-1,-1),(슼 0),(-1,1),(0,3),(1,1)}. Here we 

specify w° = ] 144444 P but in Fig. 8(c) we set 卩= 
444434 =9

y = 0, while in Fig. 8(d) we set #一 扌 v-.

Many examples show that when ve (0, 1) is 
increasing, their fine effect on the shape of the
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(c)= u = 0

Fig. 8. The fine effect of the parameters 卩,v on the local 
subdivision curve segment near a control point.

edge-points 丿,EZ" near P折=0丄…,3 n,
k

j =—1,0,…,3 m+\. Finally we apply (1) to the indexj 

and introd니ce two row edge-points 1，near

P：；U =—l,0,…,3奸?+l"=0,…，3km. The above pro­
cess can be expressed as the following subdivision rule:

= Q<i<3km,

P",3广叫jPfj弋-2叫JP由.+g厂刁Pej,

0<z<3^,-l</<3^m+l,

，
K
 
-r 

p
 

、、
^

—
丿 

1
 - 3

汁 

pw
 

A
 

” 

p
 

m
s
'

 

w
 

2
- 

4
-
3

0<i<3kn,~l<j<3 m+1,

tk+1 
撰

丄人-礼奸1 
弋-2比JP冒

+
J

subdivision curve is becoming clear, and when any of 
them is more than one and increasing, the local limit 
curve segment will have more and more inflexions.

Hence, given control points, we can control the shape 
of the interpolatory subdivision curve by adjusting the 
weights w? s and the parameters v. The implementation 
can speed up the generation and the display of a 
subdivision curve due to the ternary property of the 
scheme.

8. Application of the Non-uniform 3-point 
Scheme to Surface Modeling

The presented subdivision schemes can be 니sed to 
the design of an interpolatory surface.

8.1. Modeling a ternary interpolatory surface 
based on quadrilateral meshes

We can extend the presented subdivision scheme (1) 
to the design of a tensor-prod니ct 3-point ternary inter­
polatory subdivision surface based on regular quadrila­
teral meshes. Here we perform a l-to-9 quadrilateral 
split for every quadrilateral face: we leave all the old 
vertices unchanged, tri-sect all the edges by inserting 
two new edge-points between every adjacent pair of 
old ones, and introd니ce fb니]*  new face-points corre­
sponding to a face in the old control net.

Given control points

at subdivision lev이 1(A:> 0, AtgZ) first we let

p龜=P》=，0,…3%=0,・「3%.

Then we apply (1) to index z, introducing two column

-1 </<3^+177+1 fi<j<3km,

-1 <z<3 ”〃+1,0习V3 m.

After we get all the control points

旳",，=一1,0,...3妇+1”=一1,0,...3板+1

at step 好1, we can generate a refined regular q니adri- 
lateral mesh by connecting each control point P侦 to 
Pj 丿±i and P/±])/ (fc> 0). It is easy to see that we will 
get a (3m + 1) x (3n + 1) refinement mesh after one 
step of tensor-product 3-point ternary interpolatory 
subdivision to a regular (m + 1) x (77 + 1) quadrilateral 
mesh.

Letting k tend to infinity, this process will define a C°
k

surface from Theorem 1 for 寸叫丿 and a C1 sur-

k
face from Theorem 2 for Vw； ； e'■j due to the pro­

perty of the tensor-prod니ct surface. The limit s니rf代ce 
passes through the initial control points P%, z = 0 …仏 

j = 0, . . m
Fig. 9 shows the results of applying the tensor-product 

3-point ternary interpolatory subdivision scheme four 
times. Fig. 9(a) depicts the initial control mesh. Fig. 9(b)

shows the res니It obtained with w残. Fig. 9(c) descri-

bes the result obtained with ：=— and wk； k>Q. 
板 18 7 4

From Fig. 9 we know that we can adjust the shape of 
the subdivision surface by choosing the weights 
appropriately. Furthermore, because of the ternary and 
simple property of the tensor-product 3-point inter-
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(a) (b) (c)

Fig. 9. Examples of tensor-product 3-point ternary interpolatory 
subdivision.

polatory subdivision scheme the implementation is fast 
and effective. In practice generally we can get a “good" 
approximation to the limit surface only after 4〜5 
subdivision steps. Similarly a modified tensor-product 
3-point ternary interp이atory subdivision algorithm 
including parameters 卩,v based on regular quadrilateral 
mesh can be constructed, which is effective too.

8.2. Modeling a ternary interpolatory surface 
based on triangular meshes

Similar to the method of Dodgson [5] we can extend 
the presented subdivision scheme to the design of a 
ternary interpolatoiy subdivision surface based on 
regular triangular meshes. We perform a l-to-9 triangular 
split for every triangular face: we leave all the old 
vertices unchanged, tri-sect all the edges by inserting 
two new edge-points between every adjacent pair of 
old ones, and introduce one new face-points corre­
sponding to a face in the old control net. In the case of 
uniform and stationary subdivision (旳三vp (constant)), 
the subdivision rules are:

(1) New face-point F (see Fig. 10) for a trian이e is 
computed according to the following rule:

F = + P2+ P3) + 从已+ P5+ P7),

Fig. 11. The stencils of the ternary scheme with weight w.

2 1
where zc=w一一. The stencil of the new face-1 3 3
point is depicted in Fig. 11 (left).
(2) One of the new edge-points E (see Fig. 10) for an 
interior edge are computed by

E = aPi + 陟 2 + /(P3 + P4) + ^(P5 + PQ,
4 1 1 1

where a^--2w, /?=--+2w, The 

stencil is depicted in Fig. 11 (middle). The stencil of the 
other new edge-point is similar to this one.
(3) New edge-points for boundary edge are computed 
by (1). The corresponding stencil of a new edge-point 
is shown in Fig. 11 (right). Similar to this we can get a 
result about the stencil of the other new boundary 
edge-point.
Remark: For triangles or edges, where some stencil 
points for the new face-point or the new edge-point 
may not exist, for example, the triangles near the 
boundary of the mesh, similar to [14] virtual points are 
introd니ced by reflecting vertices across the boundary of 
the mesh. With the help of the virtual points the normal 
new fece-point and new edge-point rules can be used.

Similar to the method of eigenanalysis in [5] we 
know that the corresponding eigenvalues of the 
subdivision matrix are:

1, _：+6w, 一?+2w(值ree times), 

-^+w(5zx times), 0(six times),

which indicates that the limit surface co니Id be Cl only
2 1

for the range -<w<-. This is, unsurprisin이y, the same 

Fig. 10. The positions of some new points.

range of values of w as in the univariate and uniform 
case. But the actual continuityof the limit surface need 
a further analysis.

We can extend the above scheme to the case of non-
uniform subdivision. But still the continuity of the limit 
surface is not known. Alternatively we may use the 
conversion method proposed in [15] and then apply the 
tensor-product 3-point ternary interpolatory subdivision 
scheme to the newly generated regular quadrilateral 
mesh. Based on the property of the tensor-product surface 
the continuity of the limit surface is easily gotten.

Except for the application in curve and surface 
modeling, the presented subdivision scheme may have
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some potential application in some other areas, such as 
curve and surface metamorphosis, polygon morphing 
and so on, due to its local, ternary and controllable 
properties.

9. Conclusion

In this paper we have shown that in univariate non- 
uniform interpolating subdivision we can achieve the 
same smoothness with less number of control points by 
using a ternary rather than a binary s니bdivision scheme. 
So the subdivision schemes proposed in this paper have 
better locality. They can be used to model C1 or C° 
interpolatory curves or surfaces whose shapes are 
controllable wholly or locally. Hence the presented 
algorithms are effective. Future work should aim at the 
contin니ity analysis on the scheme based on triangular 
mesh and the generalization of the presented schemes 
to the case of non-linear subdivision and general 
control nets.
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