Charge-Transfer Complexes of Some Metal 2,4-Pentanedionates with Picric Acid as π-Acceptor

M. S. Refat*
Chemistry Department. Facuth of Education. Pot Said, Suez Canal Lniversin. Egrpt
(2004. 11.24 접수)

Charge-Transfer Complexes of Some Metal 2,4-Pentanedionates with Picric Acid as π-Acceptor

M. S. Refat*
Chemistry Department. Faculty of Education, Pot I_Said, Suez Canal Lniversin, Egrpt
(Received November 24, 2004)

Abstract

요 약. 2,4 펜탄디혼 금속 화합물과 피크릭산과 같은 π-오비탈 전자 받게의 반웅에 의해 전하 전달 화합물을 합성 하였고 특성들에 대하여 연구하였다. 상온하의 클로로포름에서 화합물들의 분광학적 특성과 안정성이 전자 주게 분자 구 조와 π-오비탈 전자 받게의 관접 하에서 조사하고 논의하였다. 실헌 결과로는 [Macac$) n(\mathrm{PA})](\mathrm{M}=\mathrm{Cu}(\mathrm{II}), \mathrm{Ni}(\mathrm{II}), \mathrm{Mn}(\mathrm{I})$, $\mathrm{Fe}(I I), \mathrm{Co}(\mathrm{III}), \mathrm{CiliII}), \mathrm{Al}(\mathrm{III}), \mathrm{Zr}(\mathrm{IV}), n=2,3,4, \mathrm{PA}=$ piciic acid)와 같은 일반적인 화학식을 가진 전하 전달 화합물 들이 생성됨을 나타네었다. 전하 전달 흡수, 원소 분석, \mathbb{R} 분광 스펙트렵, 중량 측징 연구들에 대하여 토의하였다.

주제어: 전하전달, 2,4펜탄더온 화합물, π-오비탈 전자 받게, 피크믹산

Abstract

The charge-transfer complexes formed between some different metal 2,4-pentadionato complexes and π-electron acceptor (picric acid, PA) are synthesized and characterized. Spectral characteristics and stability of the compleves are investigated and discussed in terms of donor molecular structure and π-acceptor at room temperature in chloroform. The results indicate the formation of $1: 1$ charge-transfer complexes with a general formula, [M(acac), PA]] where ($\mathrm{M}=\mathrm{Cu}(\mathrm{II}), \mathrm{Ni}(\mathrm{I}), \mathrm{Mn}(\mathrm{II}), \mathrm{Fe}(\mathrm{III}), \mathrm{Co}(\mathrm{III}), \mathrm{Cri(II}), \mathrm{Al}(\mathrm{III})$ and $\mathrm{Zr}(\mathrm{IV}), n=2,3$ or 4). The charge-transfer absorptions, elemental analysis, infrared spectra and gravimetric studies were recorded and discussed.

Keywords: Charge-Transfer, 2,4-Pentanedionato Complexes, π-Acceptors, Picric Acid

INTRODUCTION

One interesting aspect of the chemistry of metal acetylacetonates [M(acac)] concerns the pseudo aromatic π-electron delocalization in the [$\mathrm{M}(\mathrm{acac})$] rings. ${ }^{1}$ The ability of $\left[\mathrm{M}(\mathrm{acac})_{1}\right]$ compounds to form molecular complexes with σ-acceptor $\mathrm{I}_{2}{ }^{2-8}$ is one property that has been taken as evidence for such delocalization. ${ }^{\text {. }}$ It was proposed that these complexes are similar to those fonmed by aromatic liydrocarbons with I_{2} and that $\left[\mathrm{M}(\mathrm{acac})_{n}\right]$ compounds
belave as π-electron donors
Recently, we have reported the formation of new CT-complexes formed from the reaction of ferric(III) acetylacetonate, Fe(acac), with different types of σ (iodine) and π-electron acceptors (2.3 -dichloro-5.6-dicyano-l.4-benzoquinone) (DDQ). tetrachloro-pbenzoquinone (p-chloranil) and 7.7.8.8'-tetracyanoquinodimethane (TCNQ)). ${ }^{8}$

In the last few years. chemical and physical properties of some charge transfer compleves formed by the reaction of π-electron acceptors with some het-
erocyclic amines have been the subject of many investigations. ${ }^{0.11}$ some of these charge-transfer complexes show very interesting applications in the analysis of some drug in pure form or in pharmaceutical preparations $5^{12,13}$ and some of the CT-complexes show very interesting physical properties such as electrical conductivity. $1+16$
To continue these reports in this area. ${ }^{78}$ present investigation deals with the formation of the new CT-complexes obtained in the reaction of different metal acetylacetonates [Cu(II), $\mathrm{Ni}(\mathrm{II}) . \mathrm{Mn}(\mathrm{II}) . \mathrm{Fe}(\mathrm{III})$. $\mathrm{Co}(\mathrm{III}) . \mathrm{Cr}(\mathrm{III}) . \mathrm{Al}(\mathrm{III})$ and $\mathrm{Zr}(\mathrm{IV})]$ with picric acid (PA). All reactions were carried out in chloroform as a solvent. The obtained results lead to investigate the rapture of bonding and structure inherent in these new complexes.

EXPERIMENTAL

All chemicals used in this study were of high pure grade and used without further purification. Different metal acetylacetonates (Cu(II). $\mathrm{Ni}(\mathrm{II}) . \mathrm{Mn}(\mathrm{II})$. $\mathrm{Fe}(\mathrm{III}), \mathrm{Co}$ (III) $\mathrm{Cr}(\mathrm{III}), \mathrm{Al}(\mathrm{III})$ and $\mathrm{Zr}(\mathrm{IV})$) were obtained from Merck Chemical Co.. while picric acid (PA) was purchased from BDH .

The solid donor-acceptor compleves were isolated as follows. Excess saturated solution of the acceptor (picric acid. PA) in chloroform (40 ml) was added to a saturated solution for each of the donors (10 ml) in chloroform. The minture in each case was stirred for about $10-15 \mathrm{~min}$. The CT-solid complexes formed were filtered immediately and washed several times with minimum amounts of chloroform ($3-5 \mathrm{ml}$) and dried under vacuum.
The formed complexes were characterized by their elemental analysis. vibrational and electronic absorption spectroscopy. The analysis data were shown in Table 1. Copper(II). nickel(II), manganese(II). ferric(III). cobalt(III). chromium(III). aluminum(III) and zirconium(IV) contents in all charge-transfer complexes were determined gravimetrically as a stable metal oxide.
Absorption spectra of the donors [$\mathrm{Cu}(\mathrm{acac})_{2}$]. $\left[\mathrm{Ni}(\mathrm{acac})_{1}\right] .\left[\mathrm{Mn}(\mathrm{acac})_{2}\right] .\left[\mathrm{Fe}(\mathrm{acac})_{3}\right] .\left[\mathrm{Co}(\mathrm{acac})_{3}\right]$. $\left[\mathrm{Cr}(\mathrm{acac})_{3}\right] \cdot\left[\mathrm{Al}(\mathrm{acac})_{3}\right]$ or $\left[\mathrm{Zr}(\mathrm{acac})_{4}\right]:$ acceptor (picric
acid (PA)) and the formed CT-conplexes in chloroform were scanned in the region of $700-200 \mathrm{~nm}$ using a Slimadzu UV-spectrophotometer nodel 1601 PC using 1 cm matched quartz cell. The nud infrared spectra of the reactants and the formed CTcomplexes were recorded from KBr discs using a Genesis II FT-R. Photometric titration were performed ${ }^{17}$ at $25^{\circ} \mathrm{C}$ for the reactions of different acetylacetonates with the acceptor (PA) in chloroform as follow. The concentrations of all donors $\left[\mathrm{Cu}(\mathrm{acac})_{2}\right] .\left[\mathrm{Ni}(\mathrm{acac})_{2}\right] .\left[\mathrm{Mn}(\mathrm{acac})_{2}\right] . \quad\left[\mathrm{Fe}(\mathrm{acac})_{3}\right]$. $\left.\left[\mathrm{Co}(\mathrm{acac})_{3}\right] .\left[\mathrm{Cr}(\mathrm{acac})_{3}\right], \mathrm{Al}(\mathrm{acac})_{3}\right]$ and $\left[\mathrm{Zr}(\mathrm{acac})_{4}\right]$ in the reaction mixtures were kept fived at $\left(1.0 \times 1 \sigma^{-5} \mathrm{M}\right)$. while the concentration of acceptor picric acid was changed over the range from 0.25×10^{-5} to 3.00×10^{-5} and these produced solutions with donor : acceptor ratios varying from 1:0.25 to $1: 3$, as shown in Table 2.

RESULTS AND DISCUSSION

The ultraviolet-visible absorption spectra of the reactants. metal acetlacetonates ($\mathrm{M}=\mathrm{Cu}(\mathrm{II}) . \mathrm{Ni}(\mathrm{II})$. $\mathrm{Mn}(\mathrm{II}) . \mathrm{Fe}$ (III), $\mathrm{Co}(\mathrm{III}), \mathrm{Cr}(\mathrm{III}), \mathrm{Al}(\mathrm{III})$ and $\mathrm{Zr}(\mathrm{IV})$), $\left(0.2 \times 10^{-1} \mathrm{M}\right)$ and π-acceptor (PA=picric acid) $\left(0.2 \times 10^{-4} \mathrm{M}\right)$ in CHCl_{3} along with those of the obtained 1:1 CT-complexes are shown in Fig. 1 (AH , respectively). The spectra demonstrate that the formed CT-complexes have strong absorption bands around 321 and 420 nm for $[\mathrm{Cu}(a c a c)$). PA$)]$: 387.411 and 495 nm for $\left[\mathrm{Ni}(\mathrm{acac})_{2}(\mathrm{PA})\right]: 324.376$ and 407 nm for $\left[\mathrm{Mn}(\mathrm{acac})_{2}(\mathrm{PA})\right]: 345,405$ and 483 nm for $\left[\mathrm{Fe}(\mathrm{acac})_{3}(\mathrm{PA})\right]: 319.369$ and 450 nm for [Co(acac) $\left.)_{3}(\mathrm{PA})\right]: 361$ and 424 mm for $\left[\mathrm{Co}\left(\text { acac }_{3}\right)_{3}(\mathrm{PA})\right]$: 358 and 423 mm for $\left[\mathrm{Al}(\mathrm{acac})_{3}(\mathrm{PA})\right]: 360$ and 440 mm for $\left[\mathrm{Zr}(\mathrm{acac})_{4}(\mathrm{PA})\right]$. complexes. These bands do not exist in the spectra of the reactants. The stoichiometry of the $[\mathrm{M}(a c a c)]-\mathrm{PA}(\mathrm{n}=2$ for $\mathrm{M}=\mathrm{Cu} . \mathrm{Ni}$ and $\mathrm{Mn}, \mathrm{IF}=3$ for $\mathrm{M}=\mathrm{Fe}$. Co, Al and $\mathrm{Cr}, \mathrm{IF}=4$ for $\mathrm{M}=\mathrm{Zn}(\mathrm{IV})$) reactions was shown in all cases to be of ratio $1: 1$. This was interpreted on the bases of the obtained elemental analysis data of the isolated solid CTcomplexes as indicated in the experimental section. gravimetric measurements by calculated the weight loss and the final thermal products as metal oxides

Table 1. Flemental analysis data and gravimetric measurements for [$\mathrm{M}\left(\operatorname{acac}_{3}\right)(\mathrm{PA})$]

Complexes	M. W1.	$0 \cdot 3 \mathrm{C}$		$\% \mathrm{FI}$		$0 \% \mathrm{~N}$		0 M		Gravimetric analysis							
				Total weigla loss	Total residue		Final prodaci										
		Calc	Found			Calc	Found	Calc	Found	Calc	Found	Calc	Found	Cals	Found		
\|Cu(acac)(1'A)		490.87	39.11	38.77	3.46	3.42			8.55	8.47	12.95	13.44	83.79	83.18	16.21	16.82	CuI)
$\left.\mid \mathrm{Ni}(\mathrm{acac})_{\text {(}} \mathrm{PA}\right) \mid$	486.02	39.50	39.12	3.49	3.38	8.64	8.56	12.08	12.17	84.63	84.51	15.37	15.49	NiO			
$\left.\mid \mathrm{Mn}(\mathrm{acac}) \mathbf{2}^{(\mathrm{PA}}\right) \mid$	480.38	39.97	39.45	3.54	3.50	8.74	8.70	11.44	11.53	81.90	81.75	18.10	18.25	MnO_{2}			
$\|\mathrm{Fe}(\mathrm{acac}),(\mathrm{PA})\|$	582.29	43.28	43.11	4.12	4.07	7.21	7.14	9.59	9.67	86.29	86.17	13.71	13.83	$\mathrm{Fe}_{2} \mathrm{O}$			
$\|\mathrm{Co}(\mathrm{acac})(\mathrm{PA})\|$	585.37	43.05	42.89	4.10	4.06	7.17	7.09	10.07	10.14	85.83	85.73	14.17	14.27	$\mathrm{CO}_{2} \mathrm{O}_{3}$			
[$\left.\mathrm{Cr}(\mathrm{acac})_{3}(\mathrm{PA})\right]$	578.44	43.56	43.37	4.15	4.11	7.26	7.21	8.99	9.11	86.86	86.69	13.14	13.31	$\mathrm{Cr}_{2} \mathrm{O}_{3}$			
[Alacac), PA$)$]	553.42	45.53	45.24	4.34	4.33	7.59	7.36	4.87	5.05	90.79	90.46	9.21	9.54	$\mathrm{Al}_{2} \mathrm{O}_{3}$			
$\underline{[7 . n(a c a c),(} \mathrm{PA})]$	716.77	43.53	43.41	4.32	4.26	586	5.84	12.72	12.76	82.81	82.76	17.19	17.24	7 rO			

 in CICl_{3}

$\begin{aligned} & \mathrm{Xml} \\ & \text { of PA } \end{aligned}$	D:A ratio	Absorbance															
		\|Cufacac) ${ }_{2}(\mathrm{PA}) \mid$		\| Ni (acac) ${ }_{2}(\mathrm{PA}) \mid$		$\mid \mathrm{Mn}$ (acac) ${ }_{\text {e }}(1 \mathrm{~A} A) \mid$				$\mid \mathrm{Coracac})_{3}(\mathrm{PA}) \mid$		$\mid C r a c a c s i 12 A) \mid$		$\mid \mathrm{Al}$ (acac) $\mathrm{P}^{\text {PA }}$) \mid		\| $\mathrm{Cr}(\mathrm{acac}$) (1PA)\|	
		. 321 mm	420 mm	. 387 mm	495 mm	324 mm	407 mm	. 345 mm	48.3 mm	. 319 mm	450 mm	361 mm	424 mm	. 358 mm	42.3 mm	. 360 mm	440 mm
0.25	1:0.25	0.540	0.154	0.521	0.185	0.568	0.122	0.825	0.150	0.648	0.075	0.403	0.063	0.175	0.089	0.227	0.096
0.50	1:0.50	1.050	0.269	0.948	0.357	1.021	0.208	1.325	0.278	1.125	0.13 .3	0.850	0.119	0.318	0.168	0.398	0.182
0.75	1:0.75	1.562	0.361	1.396	0.507	1.503	0.303	2.025	0.398	1.675	0.175	1.425	0.173	0.456	0.250	0.599	0.261
1.00	1:1.00	2.175	0.450	1.706	0.741	2.007	0.381	2.787	0.493	2.275	0.222	1.825	0.223	0.612	0.308	0.727	0.3 .4
1.50	$1: 1.50$	2.550	0.556	2.175	0.875	2.48 .3	0.538	3.198	0.675	2.746	0.295	2.125	0.315	0.712	0.425	0.892	0.450
2.00	1:2.00	2.848	0.645	2.667	1.075	2.921	0.653	3.548	0.799	3.125	0.333	2.453	0.402	0.825	0.518	1.042	0.549
2.50	$1: 2.50$. 3.175	0.725	3.025	1.275	3.294	0.758	3.978	0.848	3.575	0.385	2.875	0.476	0.937	0.612	1.229	0.629
3.00	1:3.00	3.525	0.775	3.375	1.435	3.660	0.857	4.375	0.991	4.075	0.413	3.199	0.453	1.068	0.706	$1 . .371$	0.724

 $\left(0.2 \cdot 10^{-1} \mathrm{M}\right) .(\mathrm{d})=$ donor $\left(0.2 \cdot 10^{-4} \mathrm{M}\right)$ and $(\mathrm{c})=$ donor-aceeptor (I -complex.
for all CT-complexes, as well as from the complexes infrared spectra, which indicate the existence of the bands characteristic for both the
$\left[\mathrm{M}(\mathrm{acac})_{n}\right]$ and the picric acid as π-acceptor. The stoichiometry of $1: 1$ is also strongly supported by photometric titration measurements. These mea-

Fig. 2. Photometric titration curves for the [M(acac)]-PA mactions in (HC1s: (A): [Cu(acac)]-PA, (H): Vitacac)]-PA. (C):

surements were based on strong absorption bands at 32 I and 420 nm for $\left[\mathrm{Cu}(\mathrm{acac})_{2}\right]-\mathrm{PA}$; at $387,4 \mathrm{II}$ and 495 nm for $[\mathrm{Ni}(a c a c), \mathrm{PA}$; at 324,376 and 407 nm for $\left[\mathrm{Mn}(\mathrm{acac})_{2}\right]-\mathrm{PA}$; at $345,405 \mathrm{~nm}$ and 483 nmn for $[\mathrm{Fe}(\mathrm{acac})]-\mathrm{PA}$; at 319,369 and 450 nm for $[\mathrm{Co(acac})]-$

PA; at 36] and 424 nm for [$\left.\mathrm{Cr}(\mathrm{acac})_{7}\right]-\mathrm{PA}$; at 358 and 423 nm for $\left.[\Lambda](a c a c)_{3}\right]-\mathrm{PA}$ and at 360 and 440 nm for $\left[\mathrm{Zr}(\mathrm{acac})_{+}\right]-\mathrm{PA}$, see Table 2.

In these measurements, concentration of $[\mathrm{M}(\mathrm{acac})]$ was kept lixed, while the concentration of the accep-

Fig. 2. (Continued)
tor (PA) was varied over the range of $0.25 \times 10^{5} \mathrm{M}$ to $3.00 \times 10^{5} \mathrm{M}$ as described in the experimental section. Photometric titration curves based on these measurements are shown in Fig. 2(A-H). The [$\left.\mathrm{M}(\mathrm{acac})_{1}\right]$-acceptor equivalence points indicate that the $\left[\mathrm{M}(\mathrm{acac})_{n}\right]$: acceptor ratio in all cases is $\mathrm{I}: \mathrm{I}$,
and this result agrees quite well with the elemental analysis, and infrared spectra of the solid CT-complexes. Accordingly, the formed CT-complexes upon the reaction of $\left[\mathrm{M}(\mathrm{acac})_{11}\right]$ as a donor with the π acceptor picric acid (PA) under investigation in chloroform have the general formula [$\left.\mathrm{M}(\mathrm{acac})_{4}(\mathrm{PA})\right]$.
 in CHCl^{2}

D:A ratio	$\mathrm{C}_{2}{ }^{6} \cdot 10^{-5} \mathrm{C}_{4}^{4} \cdot 10^{-5}$		$\begin{gathered} \left(C_{0}^{0,1+}\right. \\ \left.C_{d}^{0}\right) \\ 10^{-7} \end{gathered}$	$\begin{gathered} \left(\mathrm{C}_{2}^{10} \cdot \mathrm{C}_{2}^{4}\right) \\ 10^{10} \end{gathered}$	$\left(\mathrm{C}_{0}^{\prime \prime} \mathrm{C}_{d}^{n}\right) \mathrm{A} \cdot 10^{-1 / 4}$																		
			${ }^{7}\left[\mathrm{Cu}(\text { acac })_{2}(\mathrm{PA})\right]$		[$\left.\mathrm{Ni}(\mathrm{acac})_{i}(\mathrm{PA})\right]$		[Mn(acac): P ($)$]		$\left[\mathrm{Fe}(\mathrm{acac})_{3}(\mathrm{PA})\right]$		[Co(acac), (PA)]		[Cr(acac $\left.)_{3}(\mathrm{PA})\right]$		[Al(acac $)_{3}(\mathrm{PA})$]		[7.n(acac)., (PA)]						
			387 mm		495 nmm	324 nmo	407 mm	345 mms	$483 \mathrm{nmı}$	319 mm	$450 \mathrm{mm1}$	361 nm	424 nmo	358 mm	4231001	360 nmo	440 mms						
1:0.25	1.00	0.25				125	0.25	0.463	1.623	0.479	$1 . .447$	0.441	2.049	0.303	1.667	0.385	3.333	0.620	3.989	1.428	2.797	1.103	2.604
1:0.50	1.00	0.50	150	0.50	0.476	1.861	0.527	1.399	0.489	2.403	0.377	1.797	0.444	3.748	0.588	4.175	1.572	2.976	1.256	2.699			
1:0.75	1.00	0.75	175	0.75	0.480	2.085	0.537	1.480	0.507	2.503	0.378	1.884	0.448	4.285	0.526	4.335	1.644	3.000	1.257	2.875			
1: 1.00	1.00	1.00	200	1.00	0.459	2.222	0.586	1.352	0.508	2.624	0.358	2.028	0.439	4.497	0.548	4.475	1.634	3.250	$1 . .375$	2.994			
1: 1.50	1.00	1.50	250	1.50	0.588	2.697	0.690	1.714	0.604	2.788	0.469	2.222	0.546	5.085	0.706	4.748	2.107	3.529	1.682	3.333			
1: 2.00	1.00	2.00	300	2.00	0.702	3.109	0.749	1.860	0.685	3.058	0.564	2.503	0.640	5.995	0.815	4.975	2.424	3.861	1.919	3.643			
1: 2.50	1.00	2.50	350	2.50	0.787	3.448	0.826	1.961	0.759	3.298	0.629	2.948	0.699	6.501	0.869	5.250	2.668	4.085	2.034	3.974			
1:3.00	1.00	3.00	400	3.00	0.851	3.871	0.889	2.094	0.819	3.504	0.685	3.027	0.736	7.25 .3	0.938	5.525	2.808	4.249	2.188	4.144			

The 1:1 modified Benesi-Hildebrand equation ${ }^{18}$ was used in calculating the values of the equilibrium constant $\mathrm{K}\left(1 \mathrm{~mol}^{-1}\right)$ and the extinction cocfficient, $\varepsilon\left(1 \mathrm{~mol}^{\prime} \mathrm{cm}^{'}\right)$.

Fig. 3. (Continued)
π-acceptor (PA) and the donor [M(acac) $]$ (where n
-2 for $\mathrm{Cu}(\mathrm{II})$. $\mathrm{Ni}(\mathrm{II})$ and $\mathrm{Mn}(\mathrm{II}) ; n^{-3}$ for $\mathrm{Fe}(\mathrm{III})$, $\mathrm{Co}(\mathrm{III}), \mathrm{Cr}(\mathrm{III})$ and $\mathrm{Nl}(\mathrm{III}) ; n^{-4}$ for $\left.\mathrm{Zr}(\mathrm{IV})\right)$, respectively, while A is the absorption of the strong bands
around 321 and 420 nm for $[\mathrm{Cu}(\mathrm{acac})$ (PN$)]: 387$. 411 and 495 nm for [$\left.\mathrm{Ni}(\text { acac })_{2}(\mathrm{PA})\right] ; 324,376$ and 407 nm for $\left[\mathrm{Mn}(\mathrm{acac})_{2}(\mathrm{PA})\right] ; 345,405$ and 483 nm for [Fo(acac):(PA)]; 319, 369 and 450 nm for [Co(acac):(PA)]:

Toble 4. Spectrophotometric results of CT-complexies of $\left|\mathrm{M}(\mathrm{acac})_{n}(\mathrm{PA})\right|$ (where $\boldsymbol{H}^{2}=2$ for $\mathrm{M}=\mathrm{Cu}(\mathrm{II})$. $\mathrm{Ni}(\mathrm{II})$. $\mathrm{Mn}(\mathrm{II})$: $n=3$ for $\mathrm{M}=\mathrm{Fe}(\mathrm{III}) . \operatorname{Co}(\mathrm{III})$. Cr(III). $\mathrm{Al}(\mathrm{III}): n=4$ for $\mathrm{M}=7$. (IV)] in ClICl_{3}

Complexes	$\begin{gathered} \mathrm{K}\left(\mathrm{~L} . \mathrm{mol}^{\mathrm{l}}\right) \\ \times 10^{\prime+} \end{gathered}$	$\begin{gathered} \lambda_{\text {min }} \\ (\mathrm{nm}) \end{gathered}$	$\begin{gathered} \varepsilon_{\text {U: in }}\left(\operatorname{lmol} \mathrm{mm}^{\prime} \mathrm{cm}^{\prime}\right) \\ \times 10^{-6} \end{gathered}$
[$\mathrm{Cu}(\mathrm{acac})(\mathrm{PA})]$	4.27	321	0.781
	12.5	420	0.125
	5.00	387	0.667
	2.67	495	0.370
$\mid \mathrm{Mb}(\mathrm{acac})_{2}(\mathrm{P}$ 人) \|	4.92	324	0.781
	2.41	407	0.238
$\|\mathrm{Fe}(\mathrm{acac})(\mathrm{PA})\|$	7.00	345	0.893
	4.90	483	0.200
[Co(acac) ($\left.\left.\mathrm{F}^{2} \mathrm{~A}\right)\right]$	4.00	319	1.000
	7.54	450	0.076
$\|\mathrm{Cr}(\mathrm{acac})(\mathrm{PN})\|$	6.07	361	0.599
	1.62	424	0.185
$\left.\mid \mathrm{Al}(\mathrm{acac}) \mathrm{i}^{\text {P }} \mathrm{PA}\right) \mid$	12.8	358	0.156
	2.67	423	0.178
$\mid \operatorname{lracac})_{1}(\mathrm{PN}) \mid$	6.15	360	0.250
	3.20	440	0.167

361 and 424 nm for $\left[\mathrm{Cr}(\mathrm{acac})_{3}(\mathrm{PA})\right] ; 358$ and 423 nm for $\left[\mathrm{Al}(\mathrm{acac})_{3}(\mathrm{PA})\right]$ and 360 and 440 nm for $\left[\mathrm{Zi}(\mathrm{acac})_{+}(\mathrm{PA})\right]$ complexes. The data obtained through)out these calculations are given in Table $3(\mathrm{~A}-\mathrm{H})$. Plotting the values of the $C_{u}^{\prime \prime} C_{i t}^{\prime \prime} / \mathrm{A}$ against $C_{u}^{\prime \prime}+C_{i \prime}^{\prime \prime}$ values for each donor, a straight line is obtained with a slope of $1 / \varepsilon$ and intercept of $1 / K \varepsilon$ as shown in Fig. 3(A-H), for the reactions of various [M(acac),] with PA respectively in CHCl_{3}. The values of both K and ε associated with these complexes $\left[\mathrm{Cu}(\mathrm{acac})_{2}(\mathrm{PA})\right] .\left[\mathrm{Ni}(\mathrm{acac})_{2}(\mathrm{PA})\right],\left[\mathrm{Mn}(\mathrm{acac})_{2}(\mathrm{PA})\right]$. [Fe(acac).(PA)]. |Co(acac),(PN)]. [Cr(acac),(PA)], [Al(acac), (PA)] and $\left[\mathrm{Zr}(\mathrm{acac})_{+}(\mathrm{PA})\right]$ are given in Table 4. These complexes show high values of both the formation constant K and the extinction coefficients ε. These high values of K confirm the expected high stabilities of the formed CI-complexes as a result of the expected high donation of the metal acetylacetonates [$\left.\mathrm{M}(\mathrm{acac})_{n}\right]$.
Fig. $4(\mathrm{~A}-\mathrm{H})$ shows the infrared spectra of the formed CT-complexes, [Cu(acac) (PA)], [Ni(acac),(PA)], $[\mathrm{Mn}(\mathrm{acac})(\mathrm{PA})],\left[\mathrm{Fe}(\mathrm{acac})_{:}(\mathrm{PA})\right],\left[\mathrm{Co}(\mathrm{acac})_{;}(\mathrm{PA})\right]$. $\left.[\mathrm{Cr(acac})_{(}(\mathrm{PA})\right],\left[\mathrm{Al}(\mathrm{acac})_{(}(\mathrm{PA})\right]$ and $\left[\mathrm{Zr}(\mathrm{acac})_{,}(\mathrm{PA})\right]$.

Fig. 4. Inliared spectra of: (A): |Cu(acac),(PA)| (E): [Co(acac):(PN)]. (B): $[\mathrm{Ni}(\mathrm{acac}),(\mathrm{PA})](\mathrm{F}):|\mathrm{Cr}(\mathrm{acac})(\mathrm{PA})| \cdot(\mathrm{C}):$ $|\mathrm{Mn}(\mathrm{acac})(\mathrm{PA})| \cdot(\mathrm{G}):[\mathrm{Al}(\mathrm{acac}),(\mathrm{PA})] \cdot(\mathrm{D}): \| \mathrm{fc}(\mathrm{acac}),(\mathrm{PA})]$. (II): $|/ \mathrm{r}(\mathrm{acac}),(\mathrm{PA})|$.

Table 5. Infrared frequencies ${ }^{121}$ and tentative assignments for $\left.[\mathrm{M} \text { (acac })_{\text {, }}(\mathrm{PA})\right]$ (where $n=2$ for $\mathrm{M}=\mathrm{Cu}(\mathrm{II})$, $\mathrm{Ni}(\mathrm{II})$. $\mathrm{Mn}(\mathrm{II})$: $n=3$ for $\mathrm{M}=$ Fe(III). $\mathrm{Co}(\mathrm{III}), \mathrm{Cr}(\mathrm{III})$. $\mathrm{Al}(\mathrm{III})$; $n=4$ for $\mathrm{M}=\mathrm{Z}(\mathrm{IV}) \mathrm{]}$ complexes

Frequencies ${ }^{\text {a }}$?								Assignments ${ }^{\text {b }}$
[M(acac), (PA)]								
$\mathrm{Cu}(\mathrm{II})$	Ni (II)	Mn (II)	Fe(III)	Co(III)	$\mathrm{Cr}(\mathrm{III})$	Al(III)	Zr(IV)	
$3455 \mathrm{~s}, \mathrm{br}$	$3398 \times$ br	$\begin{aligned} & 3+8+\mathrm{sh} \\ & 3+27 \mathrm{br} \\ & 3341 \mathrm{sh} \end{aligned}$	$\begin{aligned} & 3556 \mathrm{~ms} \\ & 3398 \mathrm{~ms}, \mathrm{br} \end{aligned}$	$3413 \mathrm{~s}, \mathrm{br}$	$3427 \mathrm{~s}, \mathrm{br}$	$33845 \mathrm{s.br}$	3427s.br	$\mathrm{v}(\mathrm{O}-\mathrm{H})$
3213 wibr	3199 wibr	3156 br	3227 sh	3099 s	3084 s	3199 w,br	3241 sh	$\mathrm{v}(\mathrm{C}-\mathrm{H})$: $\mathrm{M}(\mathrm{acac}){ }^{\text {a }}$
3070 ms	3099 ms	3084 w	30845	2999 sh	2984 sh	3070 ms	3070 mw	v(C-H) : [-CH-]. PA
2913 vw	2925 w. sh	2927 sh	2927 vw	2913 w	2956 vw	$2956 \mathrm{vw}$	2984 mw	$\mathrm{v}\left(\mathrm{CH}_{3}\right) ; \mathrm{M}(\mathrm{acac})_{n}$
					2913 w	$2913 \mathrm{vw}$	2899 -w	
1828 ms	18.42 s	1870 s	1870 ms	1870 ms	1870 ms	1842 s	1842 mw	$\mathrm{v}\left(\mathrm{NO}_{2}\right)$: PA
1685 s	1828 s	1628 s	1613 sl 1	$\mathrm{v}(\mathrm{C}=\mathrm{O})$: M(acac) ${ }^{\text {a }}$				
1628 s	1613 s	1613 vw	$1613 \mathrm{~ms}$			1613 w		
1599 w	1556 s	1556 s	1556 s	1599 s	1599 s	1556 s	1571 s	$\mathrm{v}(\mathrm{C}=\mathrm{C})$, ring breathing bands $\mathrm{v}(\mathrm{C}=\mathrm{O}): \mathrm{M}(\text { acac })_{n}$ $\mathrm{v}(\mathrm{C}=\mathrm{C}) ; \mathrm{M}(\mathrm{acac})_{\mathrm{n}}$
1556 s	1528 s	1528 s	1528 s	1556 s	1556 s	1528 s	1528 s	
				1528 s	1513 s			
1485 w	1485 mw	1799 mw	1499 vw	1485 sh	1428 s	1499 w	1456 s	$\delta(\mathrm{CH})$ deformation -(CH)-
1471 s	1456 vw	1428 s	1485 ms	1428 s		1471 s	1413 mw	
$1+28 \mathrm{~s}$	1428 ss		1442 vs			1428 ms		
1385 vw	1371 sh	1399 W	1371 sh	1385 w	1385 s	1399 s	1385 sh	$\begin{aligned} & v(\mathrm{C}-\mathrm{C}): \mathrm{M}(\mathrm{acac})_{n} \\ & v(\mathrm{C}-\mathrm{N}): \mathrm{PA} \end{aligned}$
1356 ms	$13+2 \mathrm{~s}$	1371 s	1342 vs	1342 s	1342 s	1371 s	1356 s	
1328 vs	1313 sh	1328 vs		1314 vw	1313 sh	1328 vs		
1271 vs	1271s	1256 vs	1285 vs	1272 vs	1271 vs	1299 vw	1271 vs	$v(\mathrm{C}-\mathrm{C})-v\left(\mathrm{C}-\mathrm{CH}_{3}\right)$ $\delta(\mathrm{CH})$; in-plane bend $\mathrm{v}(\mathrm{C}-\mathrm{O})$: PA $\delta\left(\mathrm{CH}_{3}\right)$, rock; M(acac)
1142 s	1185 ms	1156 vs	1156 vs	1171 vw	1185 vw	1271 vs	1156 s	
1057 s	1156 ss	1071 vs	1056 vs	1157 ms	1171 w	1228 sh	1056 s	
	1099 vs	999 ss	1014 vs	1128 vs	1157 vs	1142 vs	1014 vs	
				1071 vs	1071 vs	1071 vs		
				1014 s	1014 vs	1028 vs		
928 s	928 ms	928 \%s	942 s	928 s	928 s	999 sl 1	914 vs	$\delta(\mathrm{CH}):-(\mathrm{CH})-$
899 *s	914 vs	899 rs	928 ms	914 \%s	914 s	928 rs	842 s	$\mathrm{v}\left(\mathrm{C}-\mathrm{CH}_{3}\right)+\mathrm{v}(\mathrm{C}-\mathrm{O})$:
821 w	828 ms	828 ms	914 ms	843 ms	814 w	914 ss	814 ms	$\begin{aligned} & \mathrm{M}(\mathrm{acac})_{n}^{n} \\ & \delta(\mathrm{ONO}): \mathrm{PA} \end{aligned}$
			843 w			857 \%w		
			814 ms			828 s		
799 s	799 s	785 \%s	799 w	799 w	799 s	785 s	799 ms	$\delta(\mathrm{CH})$: out-of plane bend
778 s	771 vs	742 ss	771 s	772 s	785 ms	742 s	785 s	
743 ss	742 s		743 s	757 m	771 w	728 vw	742 s	
			728 ms	728 s	728 s		728 ms	
699 s	714 s	699 s	714 ss	699 ss	699 s	71.4 vs	714 vs	Ring def. - $\mathrm{v}(\mathrm{M}-\mathrm{O})$
			685 s	671 ms	671 s	671 s		
649 ms	657 sh	$\begin{aligned} & 6+2 w \\ & 628 \mathrm{w} \end{aligned}$	614 yw	657 ms	657 ms	614 w	657 vs	$\begin{aligned} & 8\left(\mathrm{C}-\mathrm{CH}_{3}\right) ; \mathrm{M}(\mathrm{acac})_{\mathrm{n}} \\ & +\mathrm{v}(\mathrm{M}-\mathrm{O}) \end{aligned}$
614 ms				628 s	614 mw			
557 s	557 ms	599 mm	557 s	557 ms	585 s	557 ms	528 vs	Ring def. - v(M-O)-
528 s	542 ms	542 ms	528 ms	528 ms	542 mw	528 mw	500 sh	$\delta(\mathrm{ONO})$: PA-Skeletal
450 s	471 vw	514 w	457 s	457 vs	514 mw	457 s	428 vs	vib.
414 -w	414 vw	442 ms	414 ms	442 ww	$457 \mathrm{\% s}$	428 Fw	414 sh	
		428 H\%			414 ms	414 w		

[^0]${ }^{\mathrm{b}} \mathrm{v}=$ stretching: and $\delta=$ bending.
respectively. The spectral bands of the formed CTcomplexes and their band assignments are reported in Table 5. The formation of the $\left[\mathrm{M}(\mathrm{acac})_{n}\right]-\mathrm{PA}$, CT-complexes are strongly supported by the observation of the main infrared bands for both reactants. $\left[\mathrm{M}(\mathrm{acac})_{\pi}\right]$ and acceptor (PA) in the product spectra. However the bands of the [$\left.\mathrm{M}(\mathrm{acac})_{n}\right]$ and acceptor in the spectra of the new CT-compleves show small shifts in the frequency values as well as some changes in their intensities compared with those of the free $[\mathrm{M}(\mathrm{acac})$) $]$ base and acceptor. This could be attributed to the expected symmetry and electronic stricture changes upon the formation of CT-complexes.
Moreover, in general. the \mathbb{R} spectra of the molecular complexes $\left.[\mathrm{M}(\mathrm{acac}))_{\mathrm{n}}\right](\mathrm{M}=\mathrm{Cu}(\mathrm{II}) . \mathrm{Ni}(\mathrm{II}), \mathrm{Mn}(\mathrm{II})$, $\mathrm{Fe}(\mathrm{III}), \mathrm{Co}(\mathrm{III}), \mathrm{Cr}(\mathrm{II}) . \mathrm{Al}$ (III) and $\mathrm{Zr}(\mathrm{IV})$) with picric acid indicate that the single $v\left(\mathrm{NO}_{2}\right)$ band of PA shifted to lower wavenumber values on complevation

REFERENCES

1. Thomson, D. W., Struct. Bonding 1971, 9. 27.
2. Singh. P. R.; Sahai, R.. Ausf. J. Chem. 1970. 23. 269.
3. Sahai. R.; Singh, V. J. Macromol. Sci., 1985. A22. 33.
4. Kulevsky. N.: Butamina. K. N., Spectrochm. Acta., 1990. 76.1. 79.
5. Sahai, R.; Singh. V.; Verma, R.. J. Ind. Chem. Soc. 1981. 53. 670.
6. Sahai, R. and Badoni. V. N.. Ind. J. Chem. 1978, I64. 1060.
7. Nour, E. M.: Teleb. S. M.: El-Mosallamy. M. A. F:; Refat. M. S.; Afr. S.. J. Chem. 2003, 56, 10.
8. Teleb, S. M.: Refat. M. S., Spectrochim. Acta., 2004. $60(7) .1579$.
9. Biasutti, A. M.: Anumziata. D. J.: Silber. J. J., Spectrochim. Acta. 1992, $\ddagger 8 \mathrm{~A} .169$
10. Ito. K.: Saito. K., Heterocycles 1994, 38, 2691.
11. Rodina. L. L.: Ryziakov, V. A.. Heterocycles 1995, 40. 1035.
12. Bebauy, L. I.: El-Kelani, K.: Abdel-Fattah, L.: Ahmed. A. S.. J. Fham. Sci. 1997, 86(9), 1030.
13. Mohamed, G. G.; Khalil. S. M.; Zayed, M. A.; El-Shall M. A.. J. Fham. Anal. 2002, 28. 1127.
14. Abd El-Khalik. S.: Abd El-Hakim. S.. Spectrose. Lett. 1998. 31 (2). 459.
15. Bespalow, B. P.; Titov, V. V.: Russ. Chem. Rev, 1975. ff. 1091.
16. Ashwell, G. I.: Eley. D. D.; Harper. A.; Torance. A. C.; Wallwok. S. C.: Willis. M. R. Acta. Cmstallogr: Sect. B 1977. 33.2258.
17. Sloog. D. A., Principle of Instnimental Analysis, Third ed. Saunders. New York, USA, 1985 (Chapter 7).
18. Abu-Eittah. R.: Al-Sugeir. F. Can. J. Chem. 1976. 5t. 3705.

[^0]: ${ }^{3} s=$ strong; $w=$ weak. $m=$ medium; sh=shoulder; $v=v e r y$ and br=broad

