Lignans from the Flower Buds of Magnolia fargesii

Jun Lee, Min Suk Yang, Sang Hae Nam, ${ }^{\dagger}$ Mi Yae Shon, ${ }^{\dagger}$ Seon Woo Hwang, and Ki Hun Park*
Division of Applied Life Science (BK21 program), Department of Agricultural Chemistry, Gyeongsang National University, Jinju 660-701, Korea. "E-mail: khpark@gsnu.ac.kr
†Department of Food Science, Jinju National University, Jinju 660-758, Korea
Received February 16, 2005

Abstract

The three new lignans $\mathbf{1 - 3}$ were isolated from the methanol extracts of the flower buds of Magnolia fargesii. They were elucidated as $(7 S, 8 R)$-1-(3,4-dimethoxyphenyl)-2-O-(2-methoxy-4-omegahydroxypropylphenyl) propane-1,3-diol, (7S,8S)-1-(4-hydroxy-3-methoxyphenyl)-2-O-(6-hydroxy-2-methoxy-4-omegahydroxypropylphenyl) propane-1,3-diol, and [tetrahydro-4-hydroxy-2-(3,4,5-trimethoxyphenyl)furan-3-yl]methyl 3,4dimethoxy benzoate by spectral analysis.

Key Words : Magnolia fargesii, Magnoliaceae, Lignan, Phenylpropanoid, Phenylfuranoid

Introduction

Magnolia fargesii (Magnoliaceae) continues to be a rich source of new secondary metabolites with wide biological activity such as anti-platelet-activating factor (PAF), antiTNF α, and calcium antagonism. ${ }^{1-5}$ In particular, specific parts of the flower buds of this species have been used as an important source of Chinese drugs as well as biologically active lignans. ${ }^{6,7}$ Lignans are classified as polyphenolic compounds, which present in various natural foods are known to show some health-enhancing effects. ${ }^{8}$ Previous chemical investigation carried out on this species shows that most lignans have a C6-C6-C6 (furofuran or furan) system. ${ }^{4,6,7,9,10}$ Here, we report on the isolation and structural elucidation of the new phenylpropanoids, $(7 S, 8 R)-1-(3,4-$ dimethoxyphenyl)-2-O-(2-methoxy-4-omegahydroxypropylphenyl) propane-1,3-diol (1) and (7S,8S)-1-(4-hydroxy-3-methoxyphenyl)-2-O-(6-hydroxy-2-methoxy-4-omegahydroxypropylphenyl) propane-1,3-diol (2). Also we wish to report the structurally rare phenylfuranoid (C6-C5-O-C7 system), [tetrahydro-4-hydroxy-2-(3,4,5-trimethoxyphenyl)-furan-3-yl]methyl 3,4-dimethoxy benzoate (3) (Fig. 1).

Results and Discussion

Compounds $\mathbf{1}$ and $\mathbf{2}$ were obtained as sticky oils in only small amounts from the flower buds of Magnolia fargesii. Compound 1 was found to have the molecular formula of
$\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{7}$ with eight degrees of unsaturation from HREIMS ($\mathrm{m} / \mathrm{z} 392.1830$). HMQC spectrum and DEPT experiments in the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ showed carbon signals for 3 methyl, 4 methylene, 8 methine and 6 quaternary carbons. Hence the eight degrees of unsaturation were presumed to be due to two aromatic rings. The propanyl group was easily defined with the connectivity from $\mathrm{C}-7$ to $\mathrm{C}-9$ in ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum. The phenylpropanoid unit was certified by HMBC correlation between of $\mathrm{H}-7$ resonating at $\delta 4.96$ with $\mathrm{C}-2(\delta 109.2)$ and C-6 (δ 118.3). Two unassigned methoxy groups in phenylpropanoid unit were easily determined because each methoxy group was correlated with C-3 and $\mathrm{C}-4$ in the HMBC. Omegahydroxypropylphenyl group was proved by the connectivity from $\mathrm{H}-7{ }^{\prime}$ to $\mathrm{H}-9$ ' and allylic coupling between $\mathrm{H}-2^{\prime}$ and $\mathrm{H}-7^{1}$ in ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum. The methoxy group in C-3' was determined by a correlation between $\mathrm{CH}_{3} \mathrm{O}, \mathrm{C}-3^{\prime}$, and $\mathrm{H}-2^{\prime}$ in the HMBC . This propanoid group was attached to the $\mathrm{C}-8$ position because the $\mathrm{H}-8$ proton resonating at $\delta 4.11$ displayed HMBC connectivity with C-4'. Additionally, a mass fragment at $\mathrm{m} / \mathrm{z} 167\left(\mathrm{M}^{+}\right.$225) indicated that a substituent of $\mathrm{C}-8$ could be a 1 '-hydroxypropyl-3'-methoxyphenyl group. The $8 R$-configuration of 1 was confirmed with negative signs at $210-250 \mathrm{~nm}$ in CD spectra. ${ }^{11-14}$ The erythreo configuration of $\mathbf{1}$ was predicted by NMR coupling constant $\left(J_{7,8}=4.4 \mathrm{~Hz}\right) .{ }^{11-14}$ Thus, compound $\mathbf{1}$ is deduced to have $(7 S, 8 R)$-configuration. Consequently, the structure of compound $\mathbf{1}$ was determined to be (7S,8R)-1-(3,4-dimethoxyphenyl)-2-O-(2-methoxy-4-

1

2

3

Figure 1. Structures of lignans 1-3.

1

3

Figure 2. Selected correlations in HMBC spectra of compounds 1 and 3.
omegahydroxypropylphenyl) propane-1,3-diol.
Compound 2 has the molecular formula of $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{8}$ with eight degrees of unsaturation as deduced from the HREIMS ($\mathrm{m} / \mathrm{z} 394.1592$), suggesting two aromatic rings. The ${ }^{1} \mathrm{H}^{-}{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{2}$ revealed good connectivity to infer the same skeleton with 1 . Based on the ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra and MS fragment at $\mathrm{m} / \mathrm{z} 181\left(\mathrm{M}^{+}-225\right)$ of $\mathbf{2}$, methoxy group at C-4 changed into hydroxy group and one more hydroxy group appeared at $\mathrm{C}-5$ ' comparing with compound 1. In HMBC experiment, the C-4 showed a correlation with $\mathrm{H}-2, \mathrm{H}-5$, and H-6, whereas the C-3 has a correlation with $\mathrm{H}-2$ and $\mathrm{H}-5$ supported a 3-methoxy-4-hydroxyphenyl moiety. 1',3', $4^{\prime}, 5^{\prime}$-Tetrasubstituted phenyl ring was deduced from the singlet of H-2' ($\delta 6.67$) and H-6' ($\delta 6.67$), whose carbon signals were appeared at $\delta 113.0$ and $\delta 116.4$, respectively. The $(7 S, 8 S)$-absolute configuration of 2 was also confirmed with the positive signs ($215-245 \mathrm{~nm}$) in CD spectra and larger coupling constant $\left(J_{7,8}=7.3 \mathrm{~Hz}\right) .{ }^{11-14}$ Therefore, compound 2 was proved as $(7 S, 8 S)$-1-(4-hydr-oxy-3-methoxyphenyl)-2-O-(6-hydroxy-2-methoxy-4-omegahydroxypropylphenyl) propane-1,3-diol.
The IR spectrum of $\mathbf{3}$ showed absorptions at 3459 and $1709 \mathrm{~cm}^{-1}$, suggesting the presence of hydroxy and ester groups. Its mass data indicated to have the molecular formula of $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{9}$ with ten degrees of unsaturation, as deduced from its HREIMS (m/z 448.1741). HMQC spectrum and DEPT experiments in the ${ }^{13} \mathrm{C}$-NMR showed two aromatic rings and a carbonyl group. Hence, extra degrees of unsaturation were presumed to be due to a tetrahydrofuran ring. The successive connectivities of from $\mathrm{H}-7$ to $\mathrm{H}-11$, and between $\mathrm{H}-2$ and $\mathrm{H}-7$ in ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum supported a phenylfuran skeleton. Symmetric methoxyl signal ($\delta 3.84,6 \mathrm{H}, \mathrm{s}$), symmetrical aromatic signal ($\delta 6.66,2 \mathrm{H}$, s) and another methoxyl signal supported $3,4,5-$ trimethoxyphenyl group, which was linked to C-7 in tetrahydrofuran ring, since a correlation between $\mathrm{H}-7$ and $\mathrm{C}-2$ was observed in HMBC. Dimethoxybenzoyl moiety was proved by presence of MS fragment at $\mathrm{m} / \mathrm{z} 165\left(\mathrm{M}^{+}-283\right)$, ABX-system signals at $\delta 6.88(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.50(1 \mathrm{H}$, d, $J=2.0 \mathrm{~Hz}), 7.58(1 \mathrm{H}, \mathrm{dd}, J=2.0,8.4 \mathrm{~Hz})$, and two methoxyl singlets ($\delta 3.91,3.94$). The $3^{\prime}, 4$ '-dimethoxybenzoyl moiety was shown to be condensed with $9-\mathrm{OH}$ of phenylfuranoid, since a correlation was observed between H-9 ($\delta 4.47$) and the carbonyl carbon ($\delta 166.6$) of dimeth-

$\mathrm{R}_{1}=$ 3,4-dimethoxybenzoyl
$R_{2}=3,4,5$-trimethoxyphenyl

Figure 3. Selected correlations in NOESY spectrum of compound 3.
oxybenzoyl moiety. NOE relationships in 2D-NOESY and the coupling constant of H-7 $(J=8.0 \mathrm{~Hz})$ suggested all trans orientations for $\mathrm{H}-7 / \mathrm{H}-8$ and $\mathrm{H}-8 / \mathrm{H}-10$ respectively. NOE cross peaks were observed between H7-H9 and H9-H10, whereas NOEs were not observed between $\mathrm{H} 7-\mathrm{H} 8$ and $\mathrm{H} 8-$ H 10 (Fig. 3). Compound $3\left([\alpha]_{\mathrm{D}}^{20}+34.0, \mathrm{CDCl}_{3}\right)$ was identified as [tetrahydro-4-hydroxy-2-(3,4,5-trimethoxy-phenyl)furan-3-yl]methyl 3,4-dimethoxy benzoate, whose skeleton was only reported by Iida, T et al. ${ }^{15}$

Experimental Section

Instruments. Optical rotations were obtained using a Perkin-Elmer polarimeter. IR spectra were recorded on a Bruker IFS66 infrared Fourier transform spectrophotometer (KBr) and UV spectra were measured on a Beckman DU650 spectrophotometer. CD spectra were obtained with a JASCO 715 spectropolarimeter. NMR experiments were conducted either on a Bruker (AM 500 MHz) FT-NMR or a Varian Inova ($400,500 \mathrm{MHz}$) with tetramethylsilane (TMS) as internal standard. EIMS and HREIMS were recorded on a Jeol JMS-700 instrument operated at 70 eV . TLC analysis were performed on Kieselgel $60 \mathrm{~F}_{254}$ (Merck) plates and silica gel (230-400 mesh) was used for column chromatography.

Extraction and isolation. The flower buds of Magnolia fargesii were purchased from Daechang Oriental Herb Store in Jinju, South Korea. A voucher specimen (Lee, J. \& M. S. Yang 021) was deposited at the Herbarium of Gyeongsang National University (GNUC). The air-dried flower buds (1 kg) of Magnolia fargesii were extracted with $\mathrm{MeOH}(5 \mathrm{~L} \times$ 3) at room temperature. The combined extracts were concentrated in vacuo to afford a brown gum (67 g), which was partitioned with chloroform and water. The chloroform layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated to give a thickish residue $(34 \mathrm{~g})$. The residue was chromatographed on Silica gel (650 g) column eluting with a gradient of 100% of chloroform to 100% MeOH to afford 76 fractions (F1-F76, each 120 mL). F37$42^{(A)}$ were further chromatographed on silica gel with gradient mixture of chloroform and acetone $(49: 1 \rightarrow 1: 1$, each 50 mL) to give 45 subfractions A1-A45. Fractions A22-A23 were further purified with silica gel chromatography eluting with chloroform and acetonitrile $(9: 1 \rightarrow 1: 1)$ to afford compound $3\left(6 \mathrm{mg}, R_{\mathrm{f}}=0.48, \mathrm{CHCl}_{3}\right.$-acetone $=2$: 1). The fractions $\mathrm{F} 47-\mathrm{F} 51^{(\mathrm{B})}$ were carried out silica gel chromatography with gradient mixture of chloroform and acetone ($19: 1 \rightarrow 1: 1$, each 50 mL) to give 42 subfractions B1-B42. Fractions B24-B25 were further purified by

Table 1. ${ }^{13} \mathrm{C}$-NMR data for compounds $\mathbf{1 - 3}$

Position	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
1	$132.5(\mathrm{~s})$	$133.6(\mathrm{~s})$	$136.7(\mathrm{~s})$
2	$109.2(\mathrm{~d})$	$109.3(\mathrm{~d})$	$103.5(\mathrm{~d})$
3	$148.8(\mathrm{~s})$	$147.1(\mathrm{~s})$	$153.7(\mathrm{~s})$
4	$148.2(\mathrm{~s})$	$146.0(\mathrm{~s})$	$137.9(\mathrm{~s})$
5	$110.9(\mathrm{~d})$	$114.7(\mathrm{~d})$	$153.7(\mathrm{~s})$
6	$118.3(\mathrm{~d})$	$119.8(\mathrm{~d})$	$103.5(\mathrm{~d})$
7	$72.6(\mathrm{~d})$	$88.3(\mathrm{~d})$	$83.8(\mathrm{~d})$
8	$87.0(\mathrm{~d})$	$54.2(\mathrm{~d})$	$56.2(\mathrm{~d})$
9	$60.7(\mathrm{t})$	$64.4(\mathrm{t})$	$63.6(\mathrm{t})$
10			$75.4(\mathrm{~d})$
11			$75.0(\mathrm{t})$
1^{\prime}	$137.8(\mathrm{~s})$	$135.8(\mathrm{~s})$	$122.2(\mathrm{~s})$
2^{\prime}	$112.3(\mathrm{~d})$	$113.0(\mathrm{~d})$	$112.2(\mathrm{~d})$
3^{\prime}	$151.0(\mathrm{~s})$	$144.6(\mathrm{~s})$	$149.0(\mathrm{~s})$
4^{\prime}	$144.7(\mathrm{~s})$	$128.2(\mathrm{~s})$	$153.6(\mathrm{~s})$
5^{\prime}	$120.3(\mathrm{~d})$	$147.0(\mathrm{~s})$	$110.5(\mathrm{~d})$
6^{\prime}	$121.1(\mathrm{~d})$	$116.4(\mathrm{~s})$	$123.8(\mathrm{~d})$
7^{\prime}	$31.8(\mathrm{t})$	$32.4(\mathrm{t})$	$166.6(\mathrm{~s})$
8^{\prime}	$34.2(\mathrm{t})$	$35.0(\mathrm{t})$	
9^{\prime}	$62.0(\mathrm{t})$	$62.7(\mathrm{t})$	
OMe			
3	$55.88(\mathrm{q})$	$56.40(\mathrm{q})$	$56.33(\mathrm{q})$
4	$55.85(\mathrm{q})$		$61.0(\mathrm{q})$
5			$56.33(\mathrm{q})$
3^{\prime}	$55.88(\mathrm{q})$	$56.45(\mathrm{q})$	$56.25(\mathrm{q})$
4^{\prime}			$56.30(\mathrm{q})$

chromatography on silica gel eluting with chloroform and acetonitrile $(4: 1 \rightarrow 1: 1)$ to afford compound $\mathbf{1}\left(11 \mathrm{mg}, R_{\mathrm{f}}=\right.$ $0.45, \mathrm{CHCl}_{3}$-acetonitrle $=2: 3$) and $2\left(7.0 \mathrm{mg}, R_{\mathrm{f}}=0.51\right.$, CHCl_{3}-acetonitrile $=2: 3$).
(7S,8R)-1-(3,4-Dimethoxyphenyl)-2-O-(2-methoxy-4-omegahydroxypropylphenyl)propane-1,3-diol (1): Sticky oils; UV $\lambda_{\text {max }}\left(\mathrm{CHCl}_{3}\right) \mathrm{nm}(\log \varepsilon): 279$ (3.79); IR $v_{\text {max }}(\mathrm{KBr})$ $\mathrm{cm}^{-1}: 3452,1743,1728,1691,1628,1565,1550 ; \mathrm{CD}(c=$ $\left.2.66 \times 10^{-3} \mathrm{M}, \mathrm{MeOH}\right) \Delta \varepsilon(\mathrm{nm}):-0.59(220),-0.98(239)$; ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 1.85\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8^{\prime}\right), 2.64$ ($2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{H}^{-}-7^{\prime}$), 3.64 ($3 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}, \mathrm{H}-9^{\prime} / \mathrm{H}-9 \mathrm{a}$), 3.84 ($3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OMe}$), 3.85 ($6 \mathrm{H}, \mathrm{s}, 3,3$ '-OMe), 3.89 ($1 \mathrm{H}, \mathrm{m}$, H-9b), $4.11(1 \mathrm{H}, \mathrm{dd}, J=5.6,8.4 \mathrm{~Hz}, \mathrm{H}-8), 4.96(1 \mathrm{H}, \mathrm{d}, J=$ $4.4 \mathrm{~Hz}, \mathrm{H}-7), 6.71$ (1H, dd, $J=1.6,8.0 \mathrm{~Hz}, \mathrm{H}-6$ '), 6.74 (1 H , d, $J=1.6 \mathrm{~Hz}, \mathrm{H}-2 '), 6.83\left(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-5 / \mathrm{H}-5^{\prime}\right), 6.89$ $(1 \mathrm{H}, \mathrm{dd}, J=1.6,8.0 \mathrm{~Hz}, \mathrm{H}-6), 6.96(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}, \mathrm{H}-2)$; ${ }^{13} \mathrm{C}-$ NMR $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$: See Table 1; EIMS m/z (70 eV, rel. int.): $392[\mathrm{M}]^{+}$(2.9), 374 (1.4), 344 (3.4), 270 (1.9), 242 (6.3), 210 (5.6), 208 (100); HREIMS m/z [M $\left.{ }^{+}\right]$: Calcd. for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{7}: 392.1835$. Found: 392.1830.
(7S,8S)-1-(4-Hydroxy-3-methoxyphenyl)-2-O-(6-hy-droxy-2-methoxy-4-omegahydroxypropylphenyl)propane-1,3-diol (2): Sticky oils; UV $\lambda_{\max }\left(\mathrm{CHCl}_{3}\right) \mathrm{nm}(\log \varepsilon): 282$ (3.84); IR $v_{\max }(\mathrm{KBr}) \mathrm{cm}^{-1}: 3457,1727,1645,1550,1511$; $\mathrm{CD}\left(c=2.17 \times 10^{-3} \mathrm{M}, \mathrm{MeOH}\right) \Delta \varepsilon(\mathrm{nm}):+0.42(227),+0.49$ (233), +0.46 (237); ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): 1.88$
(2H, m, H-8'), 2.67 ($2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}^{\prime} 7^{\prime}$), 3.60 ($1 \mathrm{H}, \mathrm{dd}, J$ $\left.=5.9,12.0 \mathrm{~Hz}, \mathrm{H}-8), 3.69(2 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}, \mathrm{H}-9)^{\prime}\right), 3.86(3 \mathrm{H}$, s, $3-\mathrm{OMe}), 3.88(3 \mathrm{H}, \mathrm{s}, 3$ '-OMe), $3.94(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 5.54$ ($1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{H}-7$), 6.67 (2H, s, H-2'/H-6'), 6.88 ($1 \mathrm{H}, \mathrm{d}$, $J=8.1 \mathrm{~Hz}, \mathrm{H}-5), 6.91(1 \mathrm{H}, \mathrm{dd}, J=1.2,8.3 \mathrm{~Hz}, \mathrm{H}-6), 6.94$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$: See table 1 ; EIMS m / z (70 eV , rel. int.): 394 [M] (40.7), 376 (100), 364 (20.1), 331 (12.7), 317 (16.8), 299 (41.7), 283 (8.8), 251 (11.7), 181 (6.6). HREIMS m / z [M]: Calcd. for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{8}$: 394.1628. Found: 394.1592.
[Tetrahydro-4-hydroxy-2-(3,4,5-trimethoxyphenyl)furan-3-yllmethyl 3,4-dimethoxy benzoate (3): Sticky oils; $[\alpha]_{\mathrm{D}}^{20}+34\left(c 0.5, \mathrm{CHCl}_{3}\right)$. UV $\lambda_{\max }\left(\mathrm{CHCl}_{3}\right) \mathrm{nm}(\log \varepsilon): 265$ (4.06), 290 (3.79); IR $v_{\max }(\mathrm{KBr}) \mathrm{cm}^{-1}: 3459,1709,1644$, 1594, 1511, $1460 ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 2.57$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), 3.83 ($3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OMe}$), 3.84 ($6 \mathrm{H}, \mathrm{s}, 3,5-\mathrm{OMe}$), 3.91 ($3 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{OMe}$), 3.94 ($3 \mathrm{H}, \mathrm{s}, 4^{\prime}-\mathrm{OMe}$), 4.08 ($2 \mathrm{H}, \mathrm{d}, J=$ $4.4 \mathrm{~Hz}, \mathrm{H}-11), 4.47$ (3H, m, H-9/H-10), 4.63 ($1 \mathrm{H}, \mathrm{d} J=8.0$ Hz, H-7), $6.66(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-2 / \mathrm{H}-6), 6.88(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-$ $\left.5^{\prime}\right), 7.50(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{H}-2$ '), $7.58(1 \mathrm{H}, \mathrm{dd}, J=2.0,8.4$ $\mathrm{Hz}, \mathrm{H}-6$ '); ${ }^{13} \mathrm{C}-\mathrm{NMR} \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$: See Table 1; EIMS m/z (70 eV, rel. int.): 448 [M] (4.8), 316 (2.5), 300 (14.5), 285 (9.4), 265 (52.8), 256 (29.4), 182 (24.2), 165 (100); HREIMS $m / z\left[M^{+}\right]$: Calcd. for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{9}, 448.1733$. Found: 448.1741.

Acknowledgments. Research for this article was supported in part by a grant from the Brain Korea 21 program.

References

1. Pan, J. X.; Hensens, O. D.; Zink, D. L.; Chang, M. N.; Hwang, S. B. Phytochemistry 1987, 26, 1377-1379.
2. Chen, C. C.; Huang, Y. L.; Chen, H. T.; Chen, Y. P.; Hsu, H. Y. Planta Med. 1988, 54, 438-440.
3. Chae, S. H.; Kim, P. S.; Cho, J. Y.; Park, J. S.; Lee, J. H.; Yoo, E. S.; Baik, K. U.; Lee, J. S.; Park, M. H. Arch. Pharm. Res. 1988, 21, 67-69.
4. Jung, K. Y.; Kim, D. S.; Oh, S. R.; Park, S. H.; Lee, I. S.; Lee, J. J.; Shin, D. H.; Lee, H. K. J. Nat. Prod. 1998, 61, 808-811.
5. Cho, J. Y.; Yoo, E. S.; Baik, K. U.; Park, M. H. Arch. Pharm. Res. 1999, 22, 348-353.
6. Kakisawa, H.; Chen, Y. P.; Hsü, H. Y. Phytochemistry 1972, 11, 2289-2293.
7. Miyazawa, M.; Kasahara, H.; Kameoka, H. Phytochemistry 1992, 31, 3666-3668.
8. Cheong, W. J.; Park, M. H.; Kang, G. W.; Ko, J. H.; Seo, Y. J. Bull. Korean Chem. Soc. 2005, 26, 747-754.
9. Kakisawa, H.; Kusumi, T.; Hso, H. Y.; Chen, Y. P. Bull. Chem. Soc. Jpn. 1970, 43, 3631.
10. Miyazawa, M.; Kasahara, H.; Kameoka, H. Phytochemistry 1996, 42, 531-533.
11. Francesca, C.; Brigida, D. B.; Marina, D.; Antonio, F.; Armando, Z. J. Agric. Food Chem. 2003, 51, 6165-6172.
12. Stephane, B.; Danielle, R.; Jeanpierre, U.; Francois, R. T.; Karim, M. J. Agric. Food Chem. 2003, 51, 34-42.
13. Marina, D. G.; Antonio, M.; Pietro, M.; Lucio, P. Phytochemistry 1994, 35, 777-779.
14. Fang, J. M.; Lee, C. K.; Cheng, Y. S. Phytochemistry 1992, 31, 3659-3661.
15. Iida, T.; Noro, Y.; Ito, K. Phytochemistry 1983, 22, 211-213.
