DOI QR코드

DOI QR Code

Development and Application of Crown Ether-based HPLC Chiral Stationary Phases

  • Hyun, Myung-Ho (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University)
  • 발행 : 2005.08.20

초록

Crown ether-based HPLC chiral stationary phases (CSPs) have been successfully utilized in the resolution of various racemic compounds containing a primary amino group. Especially, CSPs based on chiral crown ethers incorporating chiral binaphthyl unit or tartaric acid unit and based on phenolic pseudo chiral crown ethers have shown high chiral recognition efficiency. In this account paper, a review on the development of crown etherbased HPLC CSPs, their structural characteristics and applications to the resolution of racemic compounds including chiral drugs containing a primary or secondary amino group with the variation of the type and the content of mobile phase components and with the variation of the column temperature is presented.

키워드

참고문헌

  1. Crossley, R. Chirality and the Biological Activity of Drugs; CRC Press: Boca Raton, 1995
  2. Announcement. Chirality 1992, 4, 338 https://doi.org/10.1002/chir.530040513
  3. DeCamp, W. H. J. Pharm. Biomed. Anal. 1993, 11, 1167 https://doi.org/10.1016/0731-7085(93)80100-F
  4. Tomaszewski, J.; Rumore, M. M. Drug Dev. Ind. Pharm. 1994, 20, 119 https://doi.org/10.3109/03639049409039080
  5. Chiral Separations: Applications and Technology; Ahuja, S., Ed.; American Chemical Society: Washington, DC, 1997
  6. Chiral Separation Techniques: A Practical Approach; Subramanian, G., Ed.; Wiely-VCH: Weinheim, 2001
  7. Chiral Separations: Methods and Protocols; Gubitz, G.; Schmid, M. G., Eds.; Humana Press: Totowa, New Jersey, 2004
  8. Beesley, T. E.; Scott, R. P. W. Chiral Chromatography; John Wiely & Sons: New York, 1998
  9. Ahuja, S. Chiral Separations by Chromatography; American Chemical Society, Oxford University Press: Oxford, 2000
  10. Aboul-Enein, H. Y.; Ali, I. Chiral Separations by Liquid Chromatography and Related Technologies; Marcel Dekker: New York, 2003
  11. Miwa, T.; Ichikawa, M.; Tsuno, M.; Hattori, T.; Miyakawa, T.; Kayano, M.; Miyake, Y. Chem. Pharm. Bull. 1987, 35, 682 https://doi.org/10.1248/cpb.35.682
  12. Allenmark, S. J. Liq. Chromatogr. 1986, 9, 425
  13. Okamoto, Y.; Kawashima, M.; Hatada, K. J. Am. Chem. Soc. 1984, 106, 5357 https://doi.org/10.1021/ja00330a057
  14. Ward, T. J.; Armstrong, D. W. J. Liq. Chromatogr. 1986, 9, 407 https://doi.org/10.1080/01483918608076644
  15. Armstrong, D. W.; Tang, Y.; Chen, S.; Zhou, Y.; Bagwill, C.; Chen, J. R. Anal. Chem. 1994, 66, 1473 https://doi.org/10.1021/ac00081a019
  16. Ward, T. J.; Farris, A. B. J. Chromatogr. A 2001, 906, 73 https://doi.org/10.1016/S0021-9673(00)00941-9
  17. Pirkle, W. H.; Finn, J. M.; Schreiner, J. L.; Hamper, B. C. J. Am. Chem. Soc. 1981, 103, 3964 https://doi.org/10.1021/ja00403a076
  18. Pirkle, W. H.; Pochapsky, T. C. J. Am. Chem. Soc. 1986, 108, 352 https://doi.org/10.1021/ja00262a059
  19. Hyun, M. H.; Kang, M. H.; Han, S. C. J. Chromatogr. A 2000, 868, 31 https://doi.org/10.1016/S0021-9673(99)01140-1
  20. Hyun, M. H.; Cho, Y. J.; Choi, H. J.; Lee, K. W. Bull. Korean Chem. Soc. 2004, 25, 1977 https://doi.org/10.5012/bkcs.2004.25.12.1977
  21. Pirkle, W. H.; Welch, C. J.; Lamm, B. J. Org. Chem. 1992, 57, 3854 https://doi.org/10.1021/jo00040a026
  22. Gasparrini, F.; Misiti, D.; Villani, C. J. Chromatogr. A 2001, 906, 35 https://doi.org/10.1016/S0021-9673(00)00953-5
  23. Hyun, M. H.; Kim, J. I.; Cho, Y. J.; Ryoo, J.-J. Bull. Korean Chem. Soc. 2004, 25, 1707 https://doi.org/10.5012/bkcs.2004.25.11.1707
  24. Hyun, M. H. J. Sep. Sci. 2003, 26, 242 https://doi.org/10.1002/jssc.200390030
  25. Pederson, C. J. J. Am. Chem. Soc. 1967, 89, 2495 https://doi.org/10.1021/ja00986a052
  26. Pederson, C. J. J. Am. Chem. Soc. 1967, 89, 7017 https://doi.org/10.1021/ja01002a035
  27. Izatt, R. M.; Terry, R. E.; Haymore, B. L.; Hansen, L. D.; Dalley, N. K.; Avondet, A. G.; Christensen, J. J. J. Am. Chem. Soc. 1976, 98, 7620 https://doi.org/10.1021/ja00440a028
  28. Gokel, G. W.; Leevy, W. M.; Weber, M. E. Chem. Rev. 2004, 104, 2723 https://doi.org/10.1021/cr020080k
  29. Kyba, E. P.; Siegel, M. G.; Sousa, L. R.; Sogah, G. D. Y.; Cram, D. J. J. Am. Chem. Soc. 1973, 95, 2691 https://doi.org/10.1021/ja00789a050
  30. Kyba, E. P.; Koga, K.; Sousa, L. R.; Siegel, M. G.; Cram, D. J. J. Am. Chem. Soc. 1973, 95, 2692 https://doi.org/10.1021/ja00789a051
  31. Kyba, E. P.; Timko, J. M.; Kaplan, L. J.; de Jong, F.; Gokel, G. W.; Cram, D. J. J. Am. Chem. Soc. 1978, 100, 4555 https://doi.org/10.1021/ja00482a040
  32. Lingenfelter, D. S.; Helgeson, R. C.; Cram, D. J. J. Org. Chem. 1981, 46, 393 https://doi.org/10.1021/jo00315a033
  33. Yamamoto, K.; Noda, K.; Okamoto, Y. J. Chem. Soc., Chem. Commun. 1985, 1065
  34. Yamamoto, K.; Kitsuki, T.; Okamoto. Y. Bull. Chem. Soc. Jpn. 1986, 59, 1269 https://doi.org/10.1246/bcsj.59.1269
  35. Yamamoto, K.; Yumioka, H.; Okamoto, Y.; Chikamatsu, H. J. Chem. Soc., Chem. Commun. 1987, 168
  36. Nakazaki, M.; Yamamoto, K.; Ikeda, T.; Kitsuki, T.; Okamoto, Y. J. Chem. Soc., Chem. Commun. 1983, 787
  37. Behr, J.-M.; Girodeau, J.-M.; Heyward, R. C.; Lehn, J.-M.; Sauvage, J.-P. Hel. Chim. Acta 1980, 63, 2096 https://doi.org/10.1002/hlca.19800630736
  38. Gehin, D.; Cesare, P. D.; Gross, B. J. Org. Chem. 1986, 51, 1906 https://doi.org/10.1021/jo00360a050
  39. Demirel, N.; Bulut, Y. Tetrahedron Asymmetry 2003, 14, 2633 https://doi.org/10.1016/S0957-4166(03)00594-9
  40. Turgut, Y.; Hosgoren, H. Asymmetry 2003, 14, 3815 https://doi.org/10.1016/j.tetasy.2003.09.037
  41. Davidson, R. B.; Bradshaw, J. S.; Jones, B. A.; Dalley, K. N.; Christensen, J. J.; Izatt, R. M.; Morin, F. G.; Grant, D. M. J. Org. Chem. 1984, 49, 353 https://doi.org/10.1021/jo00176a026
  42. Hirose, K.; Fujiwara, A.; Matsunaga, K.; Aoki, N.; Tobe, Y. Tetrahedron Asymmetry 2003, 14, 555 https://doi.org/10.1016/S0957-4166(03)00031-4
  43. Sogah, G. D. Y.; Cram, D. J. J. Am. Chem. Soc. 1975, 97, 1259 https://doi.org/10.1021/ja00838a059
  44. Sousa, L. R.; Sogah, G. D. Y.; Hoffman, D. H.; Cram, D. J. J. Am. Chem. Soc. 1978, 100, 4569 https://doi.org/10.1021/ja00482a041
  45. Sogah, G. D. Y.; Cram, D. J. J. Am. Chem. Soc. 1976, 98, 1976
  46. Sogah, G. D. Y.; Cram, D. J. J. Am. Chem. Soc. 1979, 101, 3035 https://doi.org/10.1021/ja00505a034
  47. Shinbo, T.; Yamaguchi, T.; Nishimura, K.; Sugiura, M. J. Chromatogr. 1987, 405, 145 https://doi.org/10.1016/S0021-9673(01)81756-8
  48. Aboul-Enein, H. Y.; Seringnese, V. Biomed. Chromatogr. 1995, 9, 98 https://doi.org/10.1002/bmc.1130090209
  49. Aboul-Enein, H. Y.; Seringnese, V. Biomed. Chromatogr. 1997, 11, 7 https://doi.org/10.1002/(SICI)1099-0801(199701)11:1<7::AID-BMC607>3.0.CO;2-F
  50. Walbroehl, Y.; Wagner, J. J. Chromatogr. A 1994, 680, 253 https://doi.org/10.1016/0021-9673(94)80075-8
  51. Nishi, H.; Nakamura, K.; Nakai, H.; Sato, T. J. Chromatogr. A 1997, 757, 225 https://doi.org/10.1016/S0021-9673(96)00667-X
  52. Kersten, B. S. J. Liq. Chromatogr. 1994, 17, 33 https://doi.org/10.1080/10826079408013434
  53. Peter, A.; Lazar, L.; Fulop, F.; Armstrong, D. W. J. Chromatogr. A 2001, 926, 229 https://doi.org/10.1016/S0021-9673(01)01078-0
  54. Lee, W.; Hong, C. Y. J. Chromatogr. A 2000, 879, 113 https://doi.org/10.1016/S0021-9673(00)00322-8
  55. Shinbo, T.; Yamaguchi, T.; Yanagishita, H.; Kitamoto, D.; Sakaki, K.; Sugiura, M. J. Chromatogr. 1992, 625, 101 https://doi.org/10.1016/0021-9673(92)85191-U
  56. Hyun, M. H.; Han, S. C.; Lipshutz, B. H.; Shin, Y.-J.; Welch, C. J. J. Chromatogr. A 2001, 910, 359 https://doi.org/10.1016/S0021-9673(00)01230-9
  57. Lipshutz, B. H.; Shin, Y.-J. Tetrahedron Lett. 1998, 39, 7017 https://doi.org/10.1016/S0040-4039(98)01468-3
  58. Hyun, M. H.; Han, S. C.; Lipshutz, B. H.; Shin, Y.-J.; Welch, C. J. J. Chromatogr. A 2002, 959, 7
  59. Hyun, M. H.; Han, S. C. J. Biochem. Biophys. Methods 2002, 54, 235 https://doi.org/10.1016/S0165-022X(02)00117-3
  60. Hyun, M. H.; Min, H. J.; Cho, Y. J. J. Chromatogr. A 2003, 996, 233 https://doi.org/10.1016/S0021-9673(03)00540-5
  61. Hyun, M. H.; Tan, G.; Cho, Y. J. Biomed. Chromatogr. 2005, 19, 208 https://doi.org/10.1002/bmc.437
  62. Lehn, J.-M. J. Incl. Phenom. 1988, 6, 351 https://doi.org/10.1007/BF00658981
  63. Cram, D. J. J. Incl. Phenom. 1988, 6, 397 https://doi.org/10.1007/BF00658982
  64. Udvarhelyi, P. M.; Watkins, J. C. Chirality 1990, 2, 200 https://doi.org/10.1002/chir.530020313
  65. Okamoto, M.; Takahashi, K.-I.; Doi, T. J. Chromatogr. A 1994, 675, 244 https://doi.org/10.1016/0021-9673(94)85279-0
  66. Remelli, M.; Bovi, C.; Pulidori, F. Annali di Chimica 1999, 89, 107
  67. Thompson, R. A.; Ge, Z.; Grinberg, N.; Ellison, D.; Tway, P. Anal. Chem. 1995, 67, 1580 https://doi.org/10.1021/ac00105a017
  68. Machida, Y.; Nishi, H.; Kakamura, K. J. Chromatogr. A 1999, 830, 311 https://doi.org/10.1016/S0021-9673(98)00896-6
  69. Kuhn, R.; Erni, F.; Bereuter, T.; Hausler, J. Anal. Chem. 1992, 64, 2815 https://doi.org/10.1021/ac00046a026
  70. Kuhn, R.; Stoecklin, F.; Erni, F. Chromatographia 1992, 33, 32 https://doi.org/10.1007/BF02276847
  71. Kuhn, R.; Hoffstetter-Kuhn, S. Chromatographia 1992, 34, 505 https://doi.org/10.1007/BF02290245
  72. Kuhn, R.; Steinmetz, C.; Bereuter, T.; Haas, P.; Erni, F. J. Chromatogr. A 1994, 666, 367 https://doi.org/10.1016/0021-9673(94)80396-X
  73. Kuhn, R. Electrophoresis 1999, 20, 2065 https://doi.org/10.1002/(SICI)1522-2683(19990701)20:10<2065::AID-ELPS2065>3.0.CO;2-E
  74. Walbroehl, Y.; Wagner, J. J. Chromatogr. A 1994, 685, 321 https://doi.org/10.1016/0021-9673(94)00722-5
  75. Schmid, M. G.; Gubitz, G. J. Chromatogr. A 1995, 709, 81 https://doi.org/10.1016/0021-9673(95)00106-W
  76. Lin, J.-M.; Nakamura, T.; Hobo, T. Chromatographia 1996, 42, 559 https://doi.org/10.1007/BF02290292
  77. Mori, Y.; Ueno, K.; Umeda, T. J. Chromatogr. A 1997, 757, 328 https://doi.org/10.1016/S0021-9673(96)00674-7
  78. Verleysen, K.; Vandijck, J.; Schelfaut, M.; Sandra, P. J. High Resol. Chromatogr. 1998, 21, 323 https://doi.org/10.1002/(SICI)1521-4168(19980601)21:6<323::AID-JHRC323>3.0.CO;2-V
  79. Cho. S. I.; Lee, K.-N.; Kim, Y.-K.; Jang, J.; Chung, D. S. Electrophoresis 2002, 23, 972 https://doi.org/10.1002/1522-2683(200203)23:6<972::AID-ELPS972>3.0.CO;2-F
  80. Cho, S. I.; Shim, J.; Kim, M.- S.; Kim, Y.-K.; Chung, D. S. J. Chromatogr. A 2004, 1055, 241
  81. Machida, Y.; Nishi, H.; Nakamura, K.; Nakai, H.; Sato, T. J. Chromatogr. A 1998, 805, 82
  82. Hyun, M. H.; Jin, J. S.; Lee, W. Bull. Korean Chem. Soc. 1998, 19, 819
  83. Hyun, M. H.; Jin, J. S.; Lee, W. J. Chromatogr. A 1998, 822, 155 https://doi.org/10.1016/S0021-9673(98)00606-2
  84. Cross, G. G.; Fyles, T. M. J. Org. Chem. 1997, 62, 6226 https://doi.org/10.1021/jo970707c
  85. Aboul-Enein, H. Y.; Ali, I.; Hyun, M. H.; Cho, Y. J.; Jin, J. S. J. Biochem. Biophys. Methods 2002, 54, 407 https://doi.org/10.1016/S0165-022X(02)00142-2
  86. Hyun, M. H.; Jin, J. S.; Koo, H. J.; Lee, W. J. Chromatogr. A 1999, 837, 75 https://doi.org/10.1016/S0021-9673(99)00100-4
  87. Hyun, M. H.; Han, S. C.; Jin, J. S.; Lee, W. Chromatographia 2000, 52, 473 https://doi.org/10.1007/BF02535722
  88. Hyun, M. H.; Han, S. C.; Cho, Y. J.; Jin, J. S.; Lee, W. Biomed. Chromatogr. 2002, 16, 356 https://doi.org/10.1002/bmc.164
  89. Hyun, M. H.; Min, H. J.; Cho, Y. J. Bull. Korean Chem. Soc. 2003, 24, 911 https://doi.org/10.5012/bkcs.2003.24.7.911
  90. Hyun, M. H.; Cho, Y. J.; Jin, J. S. J. Sep. Sci. 2002, 25, 648 https://doi.org/10.1002/1615-9314(20020701)25:10/11<648::AID-JSSC648>3.0.CO;2-D
  91. Hyun, M. H.; Cho, Y. J.; Kim, J. A.; Jin, J. S. J. Liq. Chromatogr. Rel. Technol. 2003, 26, 1083 https://doi.org/10.1081/JLC-120020095
  92. Hyun, M. H.; Tan, G.; Cho, Y. J. J. Liq. Chromatogr. Rel. Technol. 2004, 27, 1671 https://doi.org/10.1081/JLC-120037363
  93. Steffeck, R. J.; Zelechonok, Y.; Gahm, K. H. J. Chromatogr. A 2002, 947, 301 https://doi.org/10.1016/S0021-9673(01)01604-1
  94. Machida, Y.; Nishi, H.; Nakamura, K. J. Chromatogr. A 1998, 810, 33 https://doi.org/10.1016/S0021-9673(98)00207-6
  95. Bang, E.; Jung, J.-W.; Lee, W.; Lee, D. W.; Lee, W. J. Chem. Soc. Perkin Trans. 2 2001, 1685
  96. Machida, Y.; Nishi, H.; Nakamura, K. Chirality 1999, 11, 173 https://doi.org/10.1002/(SICI)1520-636X(1999)11:3<173::AID-CHIR1>3.0.CO;2-P
  97. Hyun, M. H.; Jin, J. S.; Han, S. C.; Cho, Y. J. Microchem. J. 2001, 70, 205 https://doi.org/10.1016/S0026-265X(01)00134-5
  98. Hyun, M. H.; Koo, H. J.; Jin, J. S.; Lee, W. J. Liq. Chromatogr. & Rel. Technol. 2000, 23, 2669 https://doi.org/10.1081/JLC-100101825
  99. Zhang, D.; Li, F.; Kim, D. H.; Choi, H. J.; Hyun, M. H. J. Chromatogr. A 2005, 1083, 89 https://doi.org/10.1016/j.chroma.2005.06.038
  100. Hyun, M. H.; Cho, Y. J.; Kim, J. A.; Jin, J. S. J. Chromatogr. A 2003, 984, 163 https://doi.org/10.1016/S0021-9673(02)01833-2
  101. Gehin, D.; Kollman, P. A.; Wipff, G. J. Am. Chem. Soc. 1989, 111, 3011 https://doi.org/10.1021/ja00190a040
  102. Hyun, M. H.; Kim, D. H. Chirality 2004, 16, 294 https://doi.org/10.1002/chir.20038
  103. Hyun, M. H.; Kim, Y. H.; Cho, Y. J. Bull. Korean Chem. Soc. 2004, 25, 400 https://doi.org/10.5012/bkcs.2004.25.3.400
  104. Hyun, M. H.; Cho, Y. J. J. Sep. Sci. 2005, 28, 31 https://doi.org/10.1002/jssc.200401919
  105. Hyun, M. H.; Kim, D. H.; Cho, Y. J.; Jin, J. S. J. Sep. Sci. 2005, 28, 421 https://doi.org/10.1002/jssc.200401951
  106. Naemura, K.; Fuji, J.; Ogasahara, K.; Hirose, K.; Tobe, Y. Chem. Commun. 1996, 2749
  107. Naemura, K.; Nishioka, K.; Ogasahara, K.; Nishikawa, Y.; Hirose, K.; Tobe, Y. Tetrahedron Asymmetry 1998, 9, 563 https://doi.org/10.1016/S0957-4166(97)00638-1
  108. Hirose, K.; Ogasahara, K.; Nishioka, K.; Tobe, Y.; Naemura, K. J. Chem. Soc., Perkin Trans. 2 2000, 1984
  109. Hirose, K.; Nakamura, T.; Nishioka, R.; Ueshige, T.; Tobe, Y. Tetrahedron Lett. 2003, 44, 1549 https://doi.org/10.1016/S0040-4039(03)00020-0
  110. Hirose, K.; Yongzhu, J.; Nakamura, T.; Nishioka, R.; Ueshige, T.; Tobe, Y. Chirality 2005, 17, 142 https://doi.org/10.1002/chir.20138

피인용 문헌

  1. Enantioselective Recognition for Carboxylic Acids by Novel Chiral Macrocyclic Polyamides Derived from L-/D-tartaric Acid vol.18, pp.6, 2006, https://doi.org/10.1080/10610270600808141
  2. Liquid Chromatographic Chiral Separations by Crown Ether‐Based Chiral Stationary Phases vol.30, pp.5-7, 2007, https://doi.org/10.1080/10826070701191136
  3. Separation of enantiomers on diastereomeric right- and left-handed helical poly(phenyl isocyanide)s bearing l-alanine pendants immobilized on silica gel by HPLC vol.2, pp.1, 2011, https://doi.org/10.1039/C0PY00164C
  4. Liquid chromatographic resolution of racemic rasagiline and its analogues on a chiral stationary phase based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid vol.36, pp.23, 2013, https://doi.org/10.1002/jssc.201300819
  5. -leucine ethyl ester pendants as chiral stationary phases for HPLC vol.51, pp.10, 2013, https://doi.org/10.1002/pola.26611
  6. Liquid Chromatographic Resolution of Fendiline and Its Analogues on a Chiral Stationary Phase Based on (+)-(18-Crown-6)-2,3,11,12-tetracarboxylic Acid vol.19, pp.12, 2014, https://doi.org/10.3390/molecules191221386
  7. alkaloid vol.37, pp.9-10, 2014, https://doi.org/10.1002/jssc.201400078
  8. New approach for chiral separation: from polysaccharide-based materials to chirality-responsive polymers vol.57, pp.11, 2014, https://doi.org/10.1007/s11426-014-5206-8
  9. crown ether complex displaying optical properties and SMM behaviour vol.3, pp.29, 2015, https://doi.org/10.1039/C5TC01264C
  10. A Novel Method for the Preparation of a Chiral Stationary Phase Containing an Enantiopure Acridino-18-Crown-6 Ether Selector vol.53, pp.3, 2015, https://doi.org/10.1093/chromsci/bmu157
  11. Preparation of Two New Diasteromeric Chiral Stationary Phases Based on (+)-(18-Crown-6)-2,3,11,12-tetracarboxylic Acid and (R)- or (S)-1-(1-Naphthyl)ethylamine and Chiral Tethering Group Effect on the Chiral Recognition vol.21, pp.8, 2016, https://doi.org/10.3390/molecules21081051
  12. )-Leucinol-based Ligand Exchange Chiral Stationary Phases vol.37, pp.8, 2016, https://doi.org/10.1002/bkcs.10867
  13. Racemic drug resolution: a comprehensive guide vol.8, pp.42, 2016, https://doi.org/10.1039/C6AY02015A
  14. Fundamental Developments of Chiral Phase Chromatography in Connection with Enantioselective Synthesis of β-Amino Acids vol.57, pp.9, 2017, https://doi.org/10.1002/ijch.201700011
  15. Chiral separation using chiral crown ethers as chiral selectors in chirotechnology pp.2093-6214, 2018, https://doi.org/10.1007/s40005-017-0348-2
  16. Liquid chromatographic resolution of 3-amino-1,4-benzodiazepin-2-ones on crown ether-based chiral stationary phases vol.24, pp.5, 2012, https://doi.org/10.1002/chir.22041
  17. Liquid Chromatographic Resolution of Mexiletine and Its Analogs on Crown Ether-Based Chiral Stationary Phases vol.26, pp.5, 2014, https://doi.org/10.1002/chir.22318
  18. Preparation and Studies of Chiral Stationary Phases Containing Enantiopure Acridino-18-Crown-6 Ether Selectors vol.26, pp.10, 2014, https://doi.org/10.1002/chir.22361
  19. Development of HPLC Chiral Stationary Phases Based on (+)-(18-Crown-6)-2,3,11,12-tetracarboxylic Acid and Their Applications vol.27, pp.9, 2015, https://doi.org/10.1002/chir.22484
  20. Liquid chromatographic resolution of proline and pipecolic acid derivatives on chiral stationary phases based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid vol.41, pp.6, 2018, https://doi.org/10.1002/jssc.201700996
  21. Extended application of a chiral stationary phase based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid to the resolution ofN-(substituted benzoyl)-α-amino acid amides vol.29, pp.10, 2006, https://doi.org/10.1002/jssc.200600026
  22. Preparation and application of a new doubly tethered chiral stationary phase containing NCH3 amide linkage based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid vol.19, pp.1, 2007, https://doi.org/10.1002/chir.20346
  23. Resolution of β-amino acids on a high performance liquid chromatographic doubly tethered chiral stationary phase containing N–CH3 amide linkage based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid vol.30, pp.15, 2007, https://doi.org/10.1002/jssc.200700101
  24. Stability constants of complexes formed by new Schiff-base lariat ethers derived from 4,13-diaza-18-crown-6 with Ag+, Pb2+, Cu2+ cations determined by competitive potentiometry vol.60, pp.1-2, 2008, https://doi.org/10.1007/s10847-007-9349-5
  25. Liquid chromatographic direct resolution of β-amino acids on a doubly tethered chiral stationary phase containing NH amide linkage based on (+)-(18-crown-6)- 2,3,11,12-tetracarboxylic acid vol.20, pp.3-4, 2008, https://doi.org/10.1002/chir.20442
  26. LC Enantioseparation of β-Amino Acids on a Crown Ether-Based Stationary Phase vol.68, pp.S1, 2008, https://doi.org/10.1365/s10337-007-0498-x
  27. Crystalline degradation products of vancomycin as chiral stationary phase in microcolumn liquid chromatography vol.31, pp.13, 2008, https://doi.org/10.1002/jssc.200800185
  28. -homoamino acids vol.31, pp.21, 2008, https://doi.org/10.1002/jssc.200800388
  29. Complexation of 4′-nitrobenzo-15-crown-5 with Mg2+, Ca2+, Sr2+ and Ba2+ metal cations in acetonitrile-methanol binary solutions vol.54, pp.12, 2009, https://doi.org/10.1134/S0036023609120134
  30. -homoamino acids using crown ether-based chiral stationary phase vol.32, pp.7, 2009, https://doi.org/10.1002/jssc.200800561
  31. -octyl groups vol.21, pp.1, 2009, https://doi.org/10.1002/chir.20582
  32. -homoamino acids vol.21, pp.9, 2009, https://doi.org/10.1002/chir.20670
  33. A Facile Synthesis of Optically Active Four Stereoisomers of 1-Aminobenz[f]indan-2-ol vol.27, pp.5, 2005, https://doi.org/10.5012/bkcs.2006.27.5.755
  34. Preparation of a New Chiral Stationary Phase Based on (2S,3S)-O,O'-Bis-(10-undecenoyl)-N,N'-bis-(3,5-dinitrobenzoyl)-2,3-diamino-1,4-butandiol and Its Application vol.27, pp.11, 2005, https://doi.org/10.5012/bkcs.2006.27.11.1769
  35. Resolution of β-Amino Acids on a Chiral Stationary Phase Based on (+)-(18-Crown-6)-2,3,11,12-tetracarboxilic Acid without Extra Free Aminopropyl Groups on Silica Surface vol.27, pp.11, 2006, https://doi.org/10.5012/bkcs.2006.27.11.1775
  36. Liquid Chromatographic Resolution of N-(3,5-Dinitrobenzoyl)-α-amino Acids on a New Chiral Stationary Phase: the First Liquid Chromatographic Utilization of a Double-Ureide Pocket for the Recogn vol.28, pp.11, 2005, https://doi.org/10.5012/bkcs.2007.28.11.1980
  37. Synthesis of New Chiral Crown Ethers Incorporating Two Different Chiral Units and 'Matched/Mismatched' Effect of the Two Chiral Units on the Chiral Recognition vol.28, pp.12, 2005, https://doi.org/10.5012/bkcs.2007.28.12.2531
  38. Development of a Validated HPLC Method for the Simultaneous Determination of D- and L-Thyroxine in Human Plasma vol.28, pp.6, 2005, https://doi.org/10.5012/bkcs.2007.28.6.1070
  39. An NMR Chiral Solvating Agent for the Chiral Recognition of the Two Enantiomers of N-(3,5-Dinitrobenzoyl)-α-amino Acids vol.28, pp.8, 2007, https://doi.org/10.5012/bkcs.2007.28.8.1419
  40. Enantiomeric separation of novel anticancer agent 5-hydroxy-3-(4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)-cyclopent-2-en-1-one vol.1138, pp.1, 2005, https://doi.org/10.1016/j.chroma.2006.10.076
  41. Liquid chromatographic resolution of secondary amino alcohols on a chiral stationary phase based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid : Dependence of temperature effect on analyte struct vol.1164, pp.1, 2005, https://doi.org/10.1016/j.chroma.2007.07.025
  42. Preparation and Application of a New Ion-Pairing Chiral Stationary Phase for the Liquid Chromatographic Resolution of N-(3,5-Dinitrobenzoyl)-α-amino Acids vol.31, pp.16, 2008, https://doi.org/10.1080/10826070802319354
  43. Enantiomeric Recognition in Host-Guest Complexation Using Chiral Bis-pyridino-18-crown-6 Ethers, by Electrospray Ionization Mass Spectrometry (ESI-MS) Enantiomer-Labelled (EL) Guest Method vol.29, pp.5, 2005, https://doi.org/10.5012/bkcs.2008.29.5.1069
  44. Preparation of a new chiral acridino-18-crown-6 ether-based stationary phase for enantioseparation of racemic protonated primary aralkyl amines vol.64, pp.6, 2005, https://doi.org/10.1016/j.tet.2007.09.056
  45. Effect of the Modification of the Free Carboxylic Acid Groups of an HPLC Chiral Stationary Phase Based on (+)-(18-Crown-6)-2,3,11,12-tetracarboxylic Acid on the Chiral Recognition vol.30, pp.8, 2005, https://doi.org/10.5012/bkcs.2009.30.8.1903
  46. Liquid Chromatographic Resolution of Tocainide and Its Analogues on a Doubly Tethered Chiral Stationary Phase Based on (+)-(18-Crown-6)-2,3,11,12-tetracarboxylic Acid vol.31, pp.3, 2010, https://doi.org/10.5012/bkcs.2010.31.03.678
  47. Enantiomeric Resolution of α-Amino Acid Derivatives on Two Diastereomeric Chiral Stationary Phases Based on Chiral Crown Ethers Incorporating Two Different Chiral Units vol.31, pp.6, 2005, https://doi.org/10.5012/bkcs.2010.31.6.1551
  48. Liquid Chromatographic Resolution of Vigabatrin and Its Analogue γ-Amino Acids on Chiral Stationary Phases Based on (3,3'-Diphenyl-1,1'-binaphthyl)-20-crown-6 vol.32, pp.8, 2005, https://doi.org/10.5012/bkcs.2011.32.8.3017
  49. Recent applications in chiral high performance liquid chromatography: A review vol.706, pp.2, 2005, https://doi.org/10.1016/j.aca.2011.08.038
  50. 광학분리를 위한 키랄 크라운 에테르를 이용한 키랄공학의 개발과 응용 vol.27, pp.4, 2005, https://doi.org/10.7841/ksbbj.2012.27.4.199
  51. Comparative Studies on Enantiomer Resolution of α-Amino Acids and Their Esters Using (18-Crown-6)-tetracarboxylic acid as a Chiral Crown Ether Selector by NMR Spectroscopy and High-Performance L vol.33, pp.10, 2005, https://doi.org/10.5012/bkcs.2012.33.10.3481
  52. Enantiomeric Separation of 1-(Benzofuran-2-yl)alkylamines on Chiral Stationary Phases Based on Chiral Crown Ethers vol.33, pp.10, 2005, https://doi.org/10.5012/bkcs.2012.33.10.3497
  53. Absolute Configuration and Predominant Conformations of a Chiral Crown Ether‐Based Colorimetric Sensor: A Vibrational Circular Dichroism Spectroscopy and DFT Study of Chiral Recognition vol.25, pp.5, 2005, https://doi.org/10.1002/chir.22147
  54. Resolution of Tocainide and Its Analogues on a Doubly Tethered N-CH3 Amide Chiral Stationary Phase Based on (+)-(18-Crown-6)-2,3,11,12-tetracarboxylic Acid vol.34, pp.10, 2005, https://doi.org/10.5012/bkcs.2013.34.10.2978
  55. Enantioseparation on Riboflavin Derivatives Chemically Bonded to Silica Gel as Chiral Stationary Phases for HPLC vol.27, pp.8, 2005, https://doi.org/10.1002/chir.22452
  56. Combinatorial effects of the configuration of the cationic and the anionic chiral subunits of four zwitterionic chiral stationary phases leading to reversal of elution order of cyclic β vol.1467, pp.None, 2005, https://doi.org/10.1016/j.chroma.2016.05.041
  57. Chiral separation of cathinone derivatives using β‐cyclodextrin‐assisted capillary electrophoresis–Comparison of four different β‐cyclodextrin derivatives used as chi vol.40, pp.14, 2005, https://doi.org/10.1002/elps.201900085
  58. Estimating chiral selector potential of micelle-based mobile phases through the analysis of some enantiomeric mixtures vol.15, pp.1, 2005, https://doi.org/10.1080/16583655.2021.1927399