DOI QR코드

DOI QR Code

Trajectory Studies of Methyl Radical Reaction with Iodine Molecule

  • Lee, Sang-Kwon (Department of Chemistry Education and Institute of Science Education, Chonnam National University) ;
  • Ree, Jong-Baik (Department of Chemistry Education and Institute of Science Education, Chonnam National University) ;
  • Kim, Yoo-Hang (Department of Chemistry and Center for Chemical Dynamics, Inha University) ;
  • Shin, Hyung-Kyu (Department of Chemistry, University of Nevada)
  • Published : 2005.09.20

Abstract

The reaction of methyl radical with iodine molecule on an attractive potential energy surface is studied by classical trajectory procedures. The reaction occurs over a wide range of impact parameters with the majority of reactive events occurring in the backward rebound region on a subpicosecond scale. A small fraction of reactive events take place in the forward hemisphere on a longer time scale. The ensemble average of reaction times is 0.36 ps. The occurrence of reactive events is strongly favored when the incident radical and the target molecule align in the neighborhood of collinear geometry. Since the rotational velocity of I2 is slow, the preferential occurrence of reactive events at the collinear configuration of $CH_3{\ldots}I{\ldots}$I leads to the reaction exhibiting an anisotropic dependence on the orientation of $I_2$. During the collision, there is a rapid flow of energy from the $H_3C{\ldots}$I interaction to the I-I bond. The $CH_3I$ translation and $H_3C$-I vibration share nearly all the energy released in the reaction, and the distribution of the vibrational energy is statistical. The reaction probability is $\cong$0.4 at the $CH_3$ and I2 temperatures maintained at 1000 K and 300 K, respectively. The probability is weakly dependent on the $CH_3\;and\;I_2$ temperatures between 300 K and 1500 K.

Keywords

References

  1. Warnatz, J. 18th International Symp. Combustion; Combustion Institute; Pittsburg, PA, 1981; pp 369-384
  2. Steinfeld, J. I.; Francisco, J. S.; Hase, W. L. Chemical Kinetics and Dynamics, 2nd Ed.; Prentice-Hall: Upper Saddle River, NJ, 1999; pp 516-524
  3. Scherer, J. J.; Aniolek, K. W.; Cernansky, N. P.; Rakestraw, D. J. J. Chem. Phys. 1997, 107, 6196 https://doi.org/10.1063/1.474284
  4. Kovalenko, L. J.; Leone, S. R. J. Chem. Phys. 1984, 80, 3656 https://doi.org/10.1063/1.447188
  5. Kawasaki, M.; Kasatani, K.; Sato, H.; Shinohara, H.; Nishi, N. Chem. Phys. 1984, 88, 135 https://doi.org/10.1016/0301-0104(84)85109-5
  6. Tonokura, K.; Matsumi, Y.; Kawasaki, M.; Kasatani, K. J. Chem. Phys. 1991, 95, 5065 https://doi.org/10.1063/1.461673
  7. Fan, Y. B.; Randall, K. L.; Donaldson, D. J. J. Chem. Phys. 1993, 98, 4700 https://doi.org/10.1063/1.464973
  8. Suto, K.; Sato, Y.; Reed, C. L.; Skorokhodov, V.; Matsumi, Y.; Kawasaki, M. J. Phys. Chem. A 1997, 101, 1222 https://doi.org/10.1021/jp962883f
  9. Min, Z.; Quandt, R.; Bersohn, R. Chem. Phys. Lett. 1998, 296, 372 https://doi.org/10.1016/S0009-2614(98)01069-0
  10. Aitken, R. A.; Hodgson, P. K. G.; Morrison, J. J.; Oyewale, A. O. J. Chem. Soc., Perkin Transactions 2002, 3, 402
  11. McFadden, D. L.; McCullough, E. A., Jr.; Kalos, F.; Ross, J. J. Chem. Phys. 1973, 59, 121 https://doi.org/10.1063/1.1679779
  12. Zhong, D.; Cheng, P. Y.; Zewail, A. H. J. Chem. Phys. 1996, 105, 7864 https://doi.org/10.1063/1.472606
  13. Ree, J.; Kim, Y. H.; Shin, H. K. Chem. Phys. Lett. 1997, 272, 419 https://doi.org/10.1016/S0009-2614(97)00523-X
  14. Drougas, E.; Papayannis, D. K.; Kosmas, A. M. J. Phys. Chem. A 2002, 106, 6339 https://doi.org/10.1021/jp013094n
  15. Drougas, E.; Papayannis, D. K.; Kosmas, A. M. J. Mol. Struc. (Theochem) 2003, 623, 211 https://doi.org/10.1016/S0166-1280(02)00699-1
  16. Suh, M.; Sung, W.; Li, G.; Heo, S.-U.; Hwang, H. J. Bull. Korean Chem. Soc. 2003, 24, 318 https://doi.org/10.5012/bkcs.2003.24.3.318
  17. Ree, J.; Chang, K. S.; Kim, Y. H.; Shin, H. K. Bull. Korean Chem. Soc. 2003, 24, 986, 1223
  18. Ree, J.; Kim, Y. H.; Shin, H. K. Chem. Phys. Letters 2004, 394, 250 https://doi.org/10.1016/j.cplett.2004.06.134
  19. Ree, J.; Yoon, S.-H.; Park, K.-G.; Kim, Y. H. Bull. Korean Chem. Soc. 2004, 25, 1217 https://doi.org/10.5012/bkcs.2004.25.8.1217
  20. Doepker, R. D.; Ausloos, P. J. Chem. Phys. 1964, 41, 1865 https://doi.org/10.1063/1.1726168
  21. Rice, J. K.; Truby, F. K. Chem. Phys. Lett. 1973, 19, 440 https://doi.org/10.1016/0009-2614(73)80400-2
  22. Ting, C.-T.; Weston, R. E., Jr. J. Phys. Chem. 1973, 77, 2257 https://doi.org/10.1021/j100638a001
  23. Brown, L. C.; Whitehead, J. C.; Grice, R. Mol. Phys. 1976, 31, 1069 https://doi.org/10.1080/00268977600100821
  24. Komaguchi, K.; Ishiguri, Y.; Tachikawa, H.; Shiotani, M. Phys. Chem. Chem. Phys. 2002, 4, 5276 https://doi.org/10.1039/b206503g
  25. Kramer, K. H.; Bernstein, R. B. J. Chem. Phys. 1964, 40, 200 https://doi.org/10.1063/1.1724862
  26. Shin, H. K. J. Phys. Chem. 1971, 75, 923 https://doi.org/10.1021/j100677a014
  27. Buchachenko, A. A.; Gonzalez-Lezana, T.; Hernandez, M. I.; Delgado-Barrio, G.; Villarreal, P.; Stepanov, N. F. Chem. Phys. Lett. 1997, 269, 448 https://doi.org/10.1016/S0009-2614(97)00296-0
  28. Pattard, T.; Burgdorfer, J. Phys. Rev. A 2001, 64, 042720/1-042720/15
  29. Ree, J.; Kim, Y. H.; Shin, H. K. J. Phys. Chem. A 1997, 101, 4523 https://doi.org/10.1021/jp9706994
  30. Huber, K. P.; Herzberg, G. Constants of Diatomic Molecules; Van Nostrand Reinhold; New York, 1979; pp 330-332
  31. Herzberg, G. Electronic Spectra and Electronic Structure of Polyatomic Molecules; Van Nostrand; Princeton, 1967; Appendix VI
  32. Westre, S. G.; Liu, X.; Getty, J. D.; Kelly, P. B. J. Chem. Phys. 1991, 95, 8793 https://doi.org/10.1063/1.461812
  33. Herzberg, G. Infrared and Raman Spectra of Polyatomic Molecules; Van Nostrand: Princeton, 1968; p 178
  34. Spirko, V.; Kraemer, W. P. J. Mol. Spec. 1992, 153, 285 https://doi.org/10.1016/0022-2852(92)90475-4
  35. Kondratiev, V. N. Natl. Stand. Ref. Data Ser. (US), 1972, NSRDSCOM-72-10014
  36. Fukui, K. Acc. Chem. Res. 1981, 14, 363 https://doi.org/10.1021/ar00072a001
  37. Page, M.; Melver, J. W., Jr. J. Chem. Phys. 1988, 88, 922 https://doi.org/10.1063/1.454172
  38. Lee, Y. T.; McDonald, J. D.; LeBreton, P. R.; Herschbach, D. R. J. Chem. Phys. 1968, 49, 2447 https://doi.org/10.1063/1.1670423
  39. Mullins, C. B.; Rettner, C. T.; Auerbach, D. J. J. Chem. Phys. 1991, 95, 8649 https://doi.org/10.1063/1.461244
  40. Herzberg, G. Spectra of Diatomic Molecules; Van Nostrand: Princeton, 1967; p 101
  41. Valero, R.; Kroes, G.-J. J. Phys. Chem. A 2004, 108, 8672 https://doi.org/10.1021/jp048855b
  42. Johnston, H. S.; Goldfinger, P. J. Chem. Phys. 1962, 37, 700 https://doi.org/10.1063/1.1733150
  43. Bell, T. N.; Perkins, K. A.; Perkins, P. G. J. Phys. Chem. 1977, 81, 2610 https://doi.org/10.1021/j100541a006
  44. Robinson, P. J.; Holbrook, K. A. Unimolecular Reactions; Wiley: New York, 1972; p 103
  45. Polanyi, J. C. Acc. Chem. Res. 1972, 5, 161 https://doi.org/10.1021/ar50053a001
  46. Levine, R. D.; Bernstein, R. B. Molecular Reaction Dynamics and Chemical Reactivity; Oxford Univ. Press: New York, 1987; pp 148-156

Cited by

  1. Reactions of Gas-Phase Atomic Hydrogen with Chemisorbed Hydrogen on a Graphite Surface vol.28, pp.4, 2005, https://doi.org/10.5012/bkcs.2007.28.4.635
  2. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  3. Formation of Complex XeHCl+ in the Xe++ HCl Collision vol.29, pp.4, 2005, https://doi.org/10.5012/bkcs.2008.29.4.795