DOI QR코드

DOI QR Code

Transition Probabilities at Crossing in the Landau-Zener Problem

  • Published : 2005.11.20

Abstract

We obtain probabilities at a crossing of two linearly time-dependent potentials that are constantly coupled to the other by solving a time-dependent Schrödinger equation. We find that the system which was initially localized at one state evolves to split into both states at the crossing. The probability splitting depends on the coupling strength $V_0$ such that the system stays at the initial state in its entirety when $V_0$ = 0 while it is divided equally in both states when $V_0 \rightarrow {\infty}$ . For a finite coupling the probability branching at the crossing is not even and thus a complete probability transfer at $t \rightarrow {\infty}$ is not achieved in the linear potential crossing problem. The Landau-Zener formula for transition probability at $t \rightarrow {\infty}$ is expressed in terms of the probabilities at the crossing.

Keywords

References

  1. Nakamura, H. Nonadiabatic Transition: Concpets, Basic Theories, and Applications; World Scientific: Singapore, 2002
  2. Shore, B. W.; Bergmann, K.; Kuhn, A.; Schiemann, S.; Oreg, J. Phys. Rev. A 1992, 45, 5297 https://doi.org/10.1103/PhysRevA.45.5297
  3. Teranishi, Y.; Nakamura, H. Phys. Rev. Lett. 1998, 81, 2032 https://doi.org/10.1103/PhysRevLett.81.2032
  4. Teranishi, Y.; Nakamura, H. J. Chem. Phys. 1999, 111, 1415 https://doi.org/10.1063/1.479400
  5. Teranishi, Y.; Nagaya, K.; Nakamura, H. In Advances in Multiphoton Processes and Spectroscopy; Gordon, R. J.; Fujimura, Y., Eds.; World Scientific: Singapore, 2001; Vol. 14
  6. Nagaya, K.; Teranishi, Y.; Nakamura, H. In Laser Control and Manipulation of Molecules; Bandrauk, A. D.; Gordon, R. J.; Fujimura, Y., Eds.; American Chemical Society: Washington, DC, 2002
  7. Nagaya, K.; Teranishi, Y.; Nakamura, H. J. Chem. Phys. 2002, 117, 9588 https://doi.org/10.1063/1.1518003
  8. Zou, S.; Kondorskiy, A.; Mil'nikov, G.; Nakamura, H. J. Chem. Phys. 2005, 122, 084112 https://doi.org/10.1063/1.1851499
  9. Shirley, J. H. Phys. Rev. 1965, 138, B979 https://doi.org/10.1103/PhysRev.138.B979
  10. Ho, T.-S.; Chu, S.-I. Chem. Phys. Lett. 1987, 141, 315 https://doi.org/10.1016/0009-2614(87)85031-5
  11. Landau, L. D. Phys. Zts. Sov. 1932, 2, 46
  12. Zener, C. Proc. Roy. Soc. 1932, A137, 696
  13. Rosen, N.; Zener, C. Phys. Rev. 1932, 40, 502 https://doi.org/10.1103/PhysRev.40.502
  14. Osherov, V. I.; Nakamura, H. J. Chem. Phys. 1996, 105, 2770
  15. Osherov, V. I.; Nakamura, H. Phys. Rev. 1998, A59, 2486
  16. Zhu, C.; Nakamura, H. J. Chem. Phys. 1992, 97, 1892
  17. Zhu, C.; Nakamura, H. J. Chem. Phys. 1992, 97, 8497
  18. Zhu, C.; Nakamura, H. J. Chem. Phys. 1994, 101, 10630
  19. Zhu, C.; Nakamura, H. J. Chem. Phys. 1995, 102, 7448
  20. Zhu, C.; Nakamura, H. J. Chem. Phys. 1998, 109, 4689
  21. Nakamura, H. Chem. Phys. 2003, 295, 269 https://doi.org/10.1016/j.chemphys.2003.09.012
  22. Abramowitz, M.; Stegun, I. A. Handbook of Mathematical Functions; Dover: New York, 1970; p 685
  23. Child, M. S. Molecular Collision Theory; Academic Press: London, 1974; p 257
  24. Zhu, C.; Nakamura, H. J. Chem. Phys. 1994, 101, 4855

Cited by

  1. Asymptotic transitions around conical intersections in ion-diatom collisions vol.77, pp.1, 2005, https://doi.org/10.1103/physreva.77.012708
  2. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  3. Relation Between Resistance Drift and Optical Gap in Phase Change Materials vol.3, pp.10, 2005, https://doi.org/10.1002/adts.202000117