DOI QR코드

DOI QR Code

Solvatochromic Fluorescence Behavior of 8-Aminoquinoline-Benzothiazole: A Sensitive Probe for Water Composition in Binary Aqueous Solutions

  • Published : 2005.01.20

Abstract

Solvatochromic fluorescence behavior of 8-aminoquinoline based benzothiazole derivative in varying solvent systems has been investigated. Benzothiazole appended 8-aminoquinoline 3 showed distinctive fluorescence color changes depending upon the solvent polarities and the fluorescence color changes occurred over relatively wide span in visible region from 486 nm to 598 nm which can be detected with naked eye. Compound 3 also exhibited significant spectral shifts in ${\lambda}_{em}$ as a function of water composition in binary aqueous solvent systems. The changes are due to the specific interaction of 3 by hydrogen bonding with water as well as general solvent effect. The observed solvatochromic fluorescence characteristics of 3 could be used as a new probe for the micro-environmental polarity changes as well as a sensitive sensor for the determination of water composition in binary aqueous solutions.

Keywords

References

  1. Chemosensors of Ion and Molecule Recognition; Desvergne, J. P.; Czarnik, A. W., Eds.; Kluwer: Dordrecht, 1997
  2. Fluorescent Chemosensors for Ion and Molecule Recognition; Czarnik, A. W., Ed.; American Chemical Society: Washington, DC, 1993
  3. Haugland, R. P. Handbook of Fluorescent Probes and Research Products, 8th Ed.; Molecular Probes: Eugene, 2001. See also http://www.probes.com/handbook/
  4. Reichardt, C. Solvents and Solvent Effects in Organic Chemistry, 2nd ed.; VCH: Weinheim, 1988
  5. Yam, V.; Wong, K.; Zhu, N. J. Am. Chem. Soc. 2002, 124, 6506 https://doi.org/10.1021/ja025811c
  6. Ercelen, S.; Klymchenko, A.; Demchenko, A. Anal. Chim. Acta 2002, 464, 273 https://doi.org/10.1016/S0003-2670(02)00493-2
  7. Valle, J.; Catalan, J. Chem. Phys. 2001, 270, 1 https://doi.org/10.1016/S0301-0104(01)00356-1
  8. Shin, E. J.; Lee, S. H. Bull. Korean Chem. Soc. 2002, 23, 1309 https://doi.org/10.5012/bkcs.2002.23.9.1309
  9. Shin, E. J. Bull. Korean Chem. Soc. 2004, 25, 907 https://doi.org/10.5012/bkcs.2004.25.6.907
  10. Forlini, F.; Tritto, I.; Piemontesi, F. Macromol. Chem. Phys. 2000, 201, 401 https://doi.org/10.1002/(SICI)1521-3935(20000201)201:4<401::AID-MACP401>3.0.CO;2-3
  11. Cupane, A. L. M.; Fronticelli, C. J. Biol. Chem. 1997, 272, 26271 https://doi.org/10.1074/jbc.272.42.26271
  12. Rachofsky, E. L.; Osman, R.; Ross, J. B. Biochemistry 2001, 40, 946 https://doi.org/10.1021/bi001664o
  13. Hisamoto, H.; Tohma, H.; Yamada, T.; Yamauchi, K.-I.; Siswanta, D.; Yoshioka, N.; Suzuki, K. Anal. Chim. Acta 1998, 373, 271 https://doi.org/10.1016/S0003-2670(98)00421-8
  14. Tada, E. B.; Silva, P. L.; El Seoud, O. A. J. Phys. Org. Chem. 2003, 16, 691 https://doi.org/10.1002/poc.632
  15. Peyrin, F. X.; Auillaume, Y. C. Anal. Chem. 1999, 71, 2708 https://doi.org/10.1021/ac990025k
  16. Pearce, D. A.; Jotterand, N.; Carrico, I. S.; Imperiali, B. J. Am. Chem. Soc. 2001, 123, 5160 https://doi.org/10.1021/ja0039839
  17. Jiang, P.; Chen, L.; Lin, J.; Liu, Q.; Ding, J.; Gao, X.; Guo, Z. Chem. Commun. 2002, 1424
  18. Bagatin, I.; Souza, E.; Ito, A.; Toma, H. Inorg. Chem. Commun. 2003, 6, 288 https://doi.org/10.1016/S1387-7003(02)00756-6
  19. Youk, J.-S.; Kim, Y. H.; Kim, E.-J.; Youn, N. J.; Chang, S.-K. Bull. Korean Chem. Soc. 2004, 25, 869 https://doi.org/10.5012/bkcs.2004.25.6.869
  20. Youk, J.-S.; Kim, Y. H.; Moon, S. Y.; Choe, J. I.; Chang, S.-K. Chem. Lett. 2004, 702
  21. Hata, T.; Uno, T. Bull. Chem. Soc. Jpn. 1972, 45, 477 https://doi.org/10.1246/bcsj.45.477
  22. Iwamoto, K.; Araki, K.; Fujishima, H.; Shinkai, S. J. Chem. Soc. Perkin Trans. 1 1992, 1885
  23. Pratt, Y. T.; Drake, N. L. J. Am. Chem. Soc. 1960, 82, 1155 https://doi.org/10.1021/ja01490a035
  24. Miyaji, H.; Sato, W.; Sessler, J. Angew. Chem. Int. Ed. 2000, 39, 1777 https://doi.org/10.1002/(SICI)1521-3773(20000515)39:10<1777::AID-ANIE1777>3.0.CO;2-E
  25. Han, M. S.; Kim, D. H. Angew. Chem. Int. Ed. 2002, 41, 3809 https://doi.org/10.1002/1521-3773(20021018)41:20<3809::AID-ANIE3809>3.0.CO;2-N
  26. Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 2nd ed.; Kluwer: New York, 1999; p 196
  27. Liu, W.; Wang, Y.; Jin, W.; Shen, G.; Yu, R. Anal. Chim. Acta 1999, 383, 299 https://doi.org/10.1016/S0003-2670(98)00789-2

Cited by

  1. Macro-/micro-environment-sensitive chemosensing and biological imaging vol.43, pp.13, 2014, https://doi.org/10.1039/C4CS00051J
  2. N-Iodosuccinimide involved one-pot metal-free synthesis of 2-heteroaromatic benzothiazole compounds vol.15, pp.7, 2017, https://doi.org/10.1039/C6OB02731H
  3. Iodine mediated oxidative cross-coupling of unprotected anilines and heteroarylation of benzothiazoles with 2-methylquinoline vol.16, pp.4, 2018, https://doi.org/10.1039/C7OB02241G
  4. -pyrazol-5-olate monohydrate vol.64, pp.4, 2008, https://doi.org/10.1107/S1600536808006193
  5. Determination of Water Content in Aprotic Organic Solvents Using 8-Hydroxyquinoline Based Fluorescent Probe vol.27, pp.12, 2005, https://doi.org/10.5012/bkcs.2006.27.12.2058
  6. Photochemistry of 5-aminoquinoline in protic and aprotic solvents vol.79, pp.3, 2005, https://doi.org/10.1016/j.saa.2011.02.044
  7. Fluorescence characteristics of 5-aminoquinoline in acetonitrile: Water vol.164, pp.3, 2005, https://doi.org/10.1016/j.molliq.2011.09.014
  8. Natural surfactant mediated phytosynthesis and solvatochromic fluorescence of 2-aminobenzamide derivatives vol.4, pp.108, 2014, https://doi.org/10.1039/c4ra09514f