DOI QR코드

DOI QR Code

Baylis-Hillman Reaction and Chemical Transformations of Baylis-Hillman Adducts

  • Lee, Ka-Young (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Gowrisankar, Saravanan (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Kim, Jae-Nyoung (Department of Chemistry and Institute of Basic Science, Chonnam National University)
  • Published : 2005.10.20

Abstract

Carbon-carbon single bond-forming reaction is the most useful and fundamental reaction in organic synthesis. Most of the basic carbon-carbon single bond-forming reactions, thus, developed in the past. In these respects, conceptually new C-C bond formation reaction can be highlighted. The Baylis-Hillman reaction was found at the early 1970’s. However, extensive studies on this highly potential reaction were started only before 15 years. This review has been written to shed more lights to the importance of Baylis-Hillman reaction. We have focused mainly on the reaction mechanism, conceptually related reactions, and chemical transformations of the Baylis-Hillman adducts.

Keywords

References

  1. Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811 https://doi.org/10.1021/cr010043d
  2. Ciganek, E., In Organic Reactions; Paquette, L. A., Ed.; John Wiley & Sons: New York, 1997; Vol. 51, pp 201-350
  3. Basavaiah, D.; Rao, P. D.; Hyma, R. S. Tetrahedron 1996, 52, 8001 https://doi.org/10.1016/0040-4020(96)00154-8
  4. Kim, J. N.; Lee, K. Y. Curr. Org. Chem. 2002, 6, 627 https://doi.org/10.2174/1385272023374094
  5. Rauhut, M.; Currier, H. U. S. Patent 3,074,999, 1963
  6. Rauhut, M.; Currier, H. Chem. Abstr. 1963, 58, 11224a
  7. Morita, K.; Suzuki, Z.; Hirose, H. Bull. Chem. Soc. Jpn. 1968, 41, 2815 https://doi.org/10.1246/bcsj.41.2815
  8. Baylis, A. B.; Hillman, M. E. D. German Patent 2,155,113, 1972
  9. Baylis, A. B.; Hillman, M. E. D. Chem. Abstr. 1972, 77, 34174q
  10. Jellerichs, B. G.; Kong, J.-R.; Krische, M. J. J. Am. Chem. Soc. 2003, 125, 7758 https://doi.org/10.1021/ja0301469
  11. Wang, L.-C.; Luis, A. L.; Agapiou, K.; Jang, H.-Y.; Krische, M. J. J. Am. Chem. Soc. 2002, 124, 2402 https://doi.org/10.1021/ja0121686
  12. Wang, J.-C.; Ng, S.-S.; Krische, M. J. J. Am. Chem. Soc. 2003, 125, 3682 https://doi.org/10.1021/ja030022w
  13. Luis, A. L.; Krische, M. J. Synthesis 2004, 2579
  14. Cho, C.-W.; Kong, J.-R.; Krische, M. J. Org. Lett. 2004, 6, 1337 https://doi.org/10.1021/ol049600j
  15. Frank, S. A.; Mergott, D. J.; Roush, W. R. J. Am. Chem. Soc. 2002, 124, 2404 https://doi.org/10.1021/ja017123j
  16. Methot, J. L.; Roush, W. R. Adv. Synth. Catal. 2004, 346, 1035 https://doi.org/10.1002/adsc.200404087
  17. Methot, J. L.; Roush, W. R. Org. Lett. 2003, 5, 4223 https://doi.org/10.1021/ol0357550
  18. Mergott, D. J.; Frank, S. A.; Roush, W. R. Org. Lett. 2002, 4, 3157 https://doi.org/10.1021/ol026540d
  19. Roth, F.; Gygax, P.; Frater, G. Tetrahedron Lett. 1992, 33, 1045 https://doi.org/10.1016/S0040-4039(00)91855-0
  20. Dinon, F.; Richards, E.; Murphy, P. J.; Hibbs, D. E.; Hursthouse, M. B.; Malik, K. M. A. Tetrahedron Lett. 1999, 40, 3279 https://doi.org/10.1016/S0040-4039(99)00419-0
  21. Richards, E.; Murphy, P. J.; Dinon, F.; Fratucello, S.; Brown, P. M.; Gelbrich, T.; Hursthouse, M. B. Tetrahedron 2001, 57, 7771 https://doi.org/10.1016/S0040-4020(01)00744-X
  22. Brown, P. M.; Kappel, N.; Murphy, P. J. Tetrahedron Lett. 2002, 43, 8707 https://doi.org/10.1016/S0040-4039(02)02142-1
  23. Yeo, J. E.; Yang, X.; Kim, H. J.; Koo, S. Chem. Commun. 2004, 236
  24. Gong, J. H.; Im, Y. J.; Lee, K. Y.; Kim, J. N. Tetrahedron Lett. 2002, 43, 1247 https://doi.org/10.1016/S0040-4039(01)02344-9
  25. Hoffmann, H. M. R.; Rabe, J. Angew. Chem. Int. Ed. Engl. 1983, 22, 795 https://doi.org/10.1002/anie.198307951
  26. Hill, J. S.; Isaacs, N. S. Tetrahedron Lett. 1986, 27, 5007 https://doi.org/10.1016/S0040-4039(00)85119-9
  27. Hill, J. S.; Isaacs, N. S. J. Phys. Org. Chem. 1990, 3, 285 https://doi.org/10.1002/poc.610030503
  28. Price, K. E.; Broadwater, S. J.; Jung, H. M.; McQuade, D. T. Org. Lett. 2005, 7, 147 https://doi.org/10.1021/ol047739o
  29. Price, K. E.; Broadwater, S. J.; Walker, B. J.; McQuade, D. T. J. Org. Chem. 2005, 70, 3980 https://doi.org/10.1021/jo050202j
  30. Kim, J. N.; Lee, H. J.; Lee, K. Y.; Kim, H. S. Tetrahedron Lett. 2001, 42, 3737 https://doi.org/10.1016/S0040-4039(01)00552-4
  31. Chung, Y. M.; Lee, H. J.; Hwang, S. S.; Kim, J. N. Bull. Korean Chem. Soc. 2001, 22, 799
  32. Kim, J. N.; Kim, H. S.; Gong, J. H.; Chung, Y. M. Tetrahedron Lett. 2001, 42, 8341 https://doi.org/10.1016/S0040-4039(01)01791-9
  33. Kim, J. N.; Im, Y. J.; Gong, J. H.; Lee, K. Y. Tetrahedron Lett. 2001, 42, 4195 https://doi.org/10.1016/S0040-4039(01)00687-6
  34. Im, Y. J.; Chung, Y. M.; Gong, J. H.; Kim, J. N. Bull. Korean Chem. Soc. 2002, 23, 787 https://doi.org/10.5012/bkcs.2002.23.6.787
  35. Kim, J. N.; Chung, Y. M.; Im, Y. J. Tetrahedron Lett. 2002, 43, 6209 https://doi.org/10.1016/S0040-4039(02)01314-X
  36. Im, Y. J.; Lee, K. Y.; Kim, T. H.; Kim, J. N. Tetrahedron Lett. 2002, 43, 4675 https://doi.org/10.1016/S0040-4039(02)00884-5
  37. Shanmugam, P.; Rajasingh, P. Tetrahedron 2004, 60, 9283 https://doi.org/10.1016/j.tet.2004.07.067
  38. Shanmugam, P.; Rajasingh, P. Chem. Lett. 2002, 1212
  39. Shanmugam, P.; Rajasingh, P. Synlett 2005, 939
  40. Shanmugam, P.; Rajasingh, P. Tetrahedron Lett. 2005, 46, 3369 https://doi.org/10.1016/j.tetlet.2005.03.086
  41. Gowrisankar, S.; Lee, K. Y.; Kim, J. N. Tetrahedron Lett. 2005, 46, 4859 https://doi.org/10.1016/j.tetlet.2005.05.057
  42. Paquette, L. A.; Mendez-Andino, J. Tetrahedron Lett. 1999, 40, 4301 https://doi.org/10.1016/S0040-4039(99)00781-9
  43. Kim, J. M.; Lee, K. Y.; Lee, S.; Kim, J. N. Tetrahedron Lett. 2004, 45, 2805 https://doi.org/10.1016/j.tetlet.2004.02.047
  44. Lee, K. Y.; Na, J. E.; Lee, J. Y.; Kim, J. N. Bull. Korean Chem. Soc. 2004, 25, 1280 https://doi.org/10.5012/bkcs.2004.25.8.1280
  45. Lee, M. J.; Lee, K. Y.; Lee, J. Y.; Kim, J. N. Org. Lett. 2004, 6, 3313 https://doi.org/10.1021/ol048776i
  46. Declerck, V.; Ribiere, P.; Martinez, J.; Lamaty, F. J. Org. Chem. 2004, 69, 8372 https://doi.org/10.1021/jo048519r
  47. Krishna, P. R.; Narsingam, M.; Kannan, V. Tetrahedron Lett. 2004, 45, 4773 https://doi.org/10.1016/j.tetlet.2004.04.080
  48. Anand, R. V.; Baktharaman, S.; Singh, V. K. Tetrahedron Lett. 2002, 43, 5393 https://doi.org/10.1016/S0040-4039(02)01069-9
  49. Basavaiah, D.; Pandiaraju, S.; Padmaja, K. Synlett 1996, 393
  50. Basavaiah, D.; Krishnamacharyulu, M.; Suguna Hyma, R.; Pandiaraju, S. Tetrahedron Lett. 1997, 38, 2141 https://doi.org/10.1016/S0040-4039(97)00266-9
  51. Lee, H. J.; Seong, M. R.; Kim, J. N. Tetrahedron Lett. 1998, 39, 6223 https://doi.org/10.1016/S0040-4039(98)01280-5
  52. Basavaiah, D.; Bakthadoss, M.; Pandiaraju, S. Chem. Commun. 1998, 1639
  53. Basavaiah, D.; Bakthadoss, M.; Jayapal Reddy, G. Synthesis 2001, 919
  54. Lee, H. J.; Kim, T. H.; Kim, J. N. Bull. Korean Chem. Soc. 2001, 22, 1063
  55. Basavaiah, D.; Mallikarjuna Reddy, R. Tetrahedron Lett. 2001, 42, 3025 https://doi.org/10.1016/S0040-4039(01)00354-9
  56. Gowrisankar, S.; Lee, K. Y.; Lee, C. G.; Kim, J. N. Tetrahedron Lett. 2004, 45, 6141 https://doi.org/10.1016/j.tetlet.2004.06.057
  57. Gowrisankar, S.; Lee, M. J.; Lee, S.; Kim, J. N. Bull. Korean Chem. Soc. 2004, 25, 1963 https://doi.org/10.5012/bkcs.2004.25.12.1963
  58. Gowrisankar, S.; Lee, C. G.; Kim, J. N. Tetrahedron Lett. 2004, 45, 6949 https://doi.org/10.1016/j.tetlet.2004.07.070
  59. Basavaiah, D.; Pandiaraju, S.; Krishnamacharyulu, M. Synlett 1996, 747
  60. Lee, C. G.; Lee, K. Y.; Lee, S.; Kim, J. N. Tetrahedron 2005, 61, 1493 https://doi.org/10.1016/j.tet.2004.11.082
  61. Kim, S. C.; Gowrisankar, S.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 1001 https://doi.org/10.5012/bkcs.2005.26.6.1001
  62. Chamakh, A.; Amri, H. Tetrahedron Lett. 1998, 39, 375 https://doi.org/10.1016/S0040-4039(97)10593-7
  63. Chamakh, A.; M'hirsi, M.; Villieras, J.; Lebreton, J.; Amri, H. Synthesis 2000, 295
  64. Kim, J. N.; Im, Y. J.; Kim, J. M. Tetrahedron Lett. 2002, 43, 6597 https://doi.org/10.1016/S0040-4039(02)01441-7
  65. Kim, J. N.; Kim, J. M.; Lee, K. Y. Synlett 2003, 821
  66. Im, Y. J.; Lee, C. G.; Kim, H. R.; Kim, J. N. Tetrahedron Lett. 2003, 44, 2987 https://doi.org/10.1016/S0040-4039(03)00397-6
  67. Kim, J. N.; Kim, J. M.; Lee, K. Y.; Gowrisankar, S. Bull. Korean Chem. Soc. 2004, 25, 1733 https://doi.org/10.5012/bkcs.2004.25.11.1733
  68. Kim, J. M.; Lee, K. Y.; Kim, J. N. Bull. Korean Chem. Soc. 2004, 25, 328 https://doi.org/10.5012/bkcs.2004.25.2.328
  69. Familoni, O. B.; Kaye, P. T.; Klass, P. J. Chem. Commun. 1998, 2563
  70. Basavaiah, D.; Rao, J. S.; Reddy, R. J. J. Org. Chem. 2004, 69, 7379 https://doi.org/10.1021/jo0489871
  71. Lee, K. Y.; Kim, J. M.; Kim, J. N. Bull. Korean Chem. Soc. 2002, 23, 1493 https://doi.org/10.5012/bkcs.2002.23.10.1493
  72. Lee, K. Y.; Kim, J. N. Bull. Korean Chem. Soc. 2002, 23, 939 https://doi.org/10.5012/bkcs.2002.23.7.939
  73. Basavaiah, D.; Mallikarjuna Reddy, R. M.; Kumaragurubaran, N.; Sharada, D. S. Tetrahedron 2002, 58, 3693 https://doi.org/10.1016/S0040-4020(02)00332-0
  74. O'Dell, D. K.; Nicholas, K. M. J. Org. Chem. 2003, 68, 6427 https://doi.org/10.1021/jo034447c
  75. Basavaiah, D.; Rao, J. S. Tetrahedron Lett. 2004, 45, 1621 https://doi.org/10.1016/j.tetlet.2003.12.133
  76. Lee, K. Y.; Kim, J. M.; Kim, J. N. Tetrahedron 2003, 59, 385 https://doi.org/10.1016/S0040-4020(02)01518-1
  77. Kim, J. N.; Lee, K. Y.; Kim, H. S.; Kim, T. Y. Org. Lett. 2000, 2, 343 https://doi.org/10.1021/ol9903741
  78. Lee, M. J.; Lee, K. Y.; Park, D. Y.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 1281 https://doi.org/10.5012/bkcs.2005.26.8.1281

Cited by

  1. Chemo- and regio-selective functionalization of Morita–Baylis–Hillman bromides with anthranilic acid vol.87, pp.12, 2009, https://doi.org/10.1139/V09-128
  2. -substituted isatins with cerium ammonium nitrate (CAN) and alcohol (ROH) vol.87, pp.4, 2009, https://doi.org/10.1139/V09-020
  3. Synthesis and biological evaluation of tetrazole containing compounds as possible anticancer agents vol.2, pp.6, 2011, https://doi.org/10.1039/c0md00263a
  4. Tandem allylic substitution–5-exo-dig-carbocyclization: a [4 + 1]-annulation approach to arylidene cyclopentenes from MBH-acetates of acetylenic aldehydes vol.10, pp.45, 2012, https://doi.org/10.1039/c2ob26934a
  5. Organocatalyzed Intramolecular Michael Addition of Morita-Baylis-Hillman Adducts of β-Arylnitroethylenes: An Entry to 3-Aryl-4-nitrocyclohexanones vol.2012, pp.32, 2012, https://doi.org/10.1002/ejoc.201200884
  6. Morita-Baylis-Hillman Route to Dimethyl 2,3-Dihydrobenzo[b]oxepine-2,4-dicarboxylates and Methyl 2-(2-Carbomethoxybenzo[b]furan-3-yl)propanoates from Salicylaldehydes vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.233
  7. Facile Synthesis of 5-Alkylidene-1,5-dihydropyrrol-2-ones from Morita-Baylis-Hillman Adducts vol.33, pp.4, 2012, https://doi.org/10.5012/bkcs.2012.33.4.1337
  8. Facile Synthesis of 5-Hydroxy-3-pyrrolin-2-ones from Morita-Baylis-Hillman Adducts vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1622
  9. An Efficient Synthesis of Various γ-Substituted Butenolides from Morita-Baylis-Hillman Adducts vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1781
  10. Palladium-Catalyzed, Chelation-Assisted Stereo- and Regioselective Synthesis of Tetrasubstituted Olefins by Oxidative Heck Arylation vol.354, pp.13, 2012, https://doi.org/10.1002/adsc.201200306
  11. Driving the Morita-Baylis-Hillman Reaction to a Multicomponent Organic Transformation vol.2014, pp.4, 2013, https://doi.org/10.1002/ejoc.201301226
  12. 1,3-Dinitro Alkanes: An Emerging Class of Bidentate Compounds vol.2014, pp.9, 2013, https://doi.org/10.1002/ejoc.201301531
  13. Synthesis of Poly-Substituted Benzene Derivatives via [3+3] Annulation Protocol from Morita-Baylis-Hillman Adducts and Glutaconates vol.34, pp.11, 2013, https://doi.org/10.5012/bkcs.2013.34.11.3503
  14. An Efficient Conjugate Addition of Dialkyl Phosphite to Electron-Deficient Olefins: The Use of a Nucleophilic Organocatalyst to Form a Strong Base vol.34, pp.3, 2013, https://doi.org/10.5012/bkcs.2013.34.3.989
  15. An Expedient Synthesis of Cinnamyl Fluorides from Morita-Baylis-Hillman Adducts vol.34, pp.3, 2013, https://doi.org/10.5012/bkcs.2013.34.3.993
  16. ), Ring- Expansion by Palladium Rearrangement, and Aromatization: An Expedient Synthesis of 4-Arylnicotinates from Morita-Baylis-Hillman Adducts vol.355, pp.10, 2013, https://doi.org/10.1002/adsc.201300211
  17. Thermal Intramolecular [2+2] Cycloaddition: Synthesis of 3-Azabicyclo[3.1.1]heptanes from Morita-Baylis-Hillman Adduct-Derived 4,4-Diaryl-1,3-dienes vol.356, pp.16, 2014, https://doi.org/10.1002/adsc.201400571
  18. Sequential Allylic Substitution/Pauson–Khand Reaction: A Strategy to Bicyclic Fused Cyclopentenones from MBH-Acetates of Acetylenic Aldehydes vol.79, pp.17, 2014, https://doi.org/10.1021/jo500962d
  19. ]quinolines from Morita-Baylis-Hillman Adducts of 2-Bromobenzaldehydes vol.36, pp.1, 2015, https://doi.org/10.1002/bkcs.10050
  20. Synthesis of 3-(γ,δ-Disubstituted)allylidene-2-Oxindoles from Isatins by Wittig Reaction with Morita-Baylis-Hillman Bromides vol.36, pp.1, 2015, https://doi.org/10.1002/bkcs.10053
  21. ]quinoline-1,2-diones via Intramolecular Friedel-Crafts Cyclization Protocol vol.36, pp.11, 2015, https://doi.org/10.1002/bkcs.10539
  22. Synthesis of 1,3,4-Trisubstituted Benzenes from Morita-Baylis-Hillman Adducts of α-Bromocinnamaldehyde via [5+1] Annulation Strategy vol.36, pp.12, 2015, https://doi.org/10.1002/bkcs.10577
  23. an Intramolecular Friedel-Crafts Alkenylation vol.36, pp.7, 2015, https://doi.org/10.1002/bkcs.10337
  24. Synthesis of Tetrahydropyridines from Morita-Baylis-Hillman Acetates of α,β-Unsaturated Aldehydes Via an Intramolecular 1,6-Conjugate Addition vol.37, pp.1, 2015, https://doi.org/10.1002/bkcs.10610
  25. ), Ring-Expansion by Palladium Rearrangement, and Aromatization vol.37, pp.2, 2016, https://doi.org/10.1002/bkcs.10636
  26. An Efficient Synthesis of α-Isothiocyanato-α,β-unsaturated Esters from Morita-Baylis-Hillman Adducts vol.37, pp.4, 2016, https://doi.org/10.1002/bkcs.10705
  27. ]azepines from Morita-Baylis-Hillman Adducts via Pictet-Spengler Reaction vol.37, pp.5, 2016, https://doi.org/10.1002/bkcs.10752
  28. 2′-Intramolecular Oxidative Nucleophilic Substitution of Hydrogen-E2 Elimination vol.37, pp.6, 2016, https://doi.org/10.1002/bkcs.10774
  29. Synthesis of Aminonaphthalenes from Morita-Baylis-Hillman Carbonates via 6π-Electrocyclization of Ketenimine Intermediates vol.37, pp.7, 2016, https://doi.org/10.1002/bkcs.10812
  30. -allylindoles to 3-Alkyl-2-allylindoles vol.37, pp.9, 2016, https://doi.org/10.1002/bkcs.10890
  31. Baylis-Hillman Reaction: In Situ Generated Isoquinolinium Species as Excellent Electrophiles for Coupling with Alkyl Acrylates and Acrylonitrile vol.2017, pp.34, 2017, https://doi.org/10.1002/ejoc.201700743
  32. Silica Chloride-Catalyzed One-Pot Isomerization - Chlorination, Arylation, and Etherification of Baylis - Hillman Adducts vol.60, pp.11, 2007, https://doi.org/10.1071/CH07123
  33. Catalytic Asymmetric Construction of Spiro(γ-butyrolactam-γ-butyrolactone) Moieties through Sequential Reactions of Cyclic Imino Esters with Morita-Baylis-Hillman Bromides vol.18, pp.40, 2012, https://doi.org/10.1002/chem.201201475
  34. 2′ Reaction/C-H Functionalization/Aromatization through the Reaction of Morita-Baylis-Hillman Acetates with Nitroalkanes vol.2018, pp.9, 2018, https://doi.org/10.1002/ejoc.201701574
  35. Construction of Adjacent Quaternary and Tertiary Stereocentersvia an Organocatalytic Allylic Alkylation of Morita–Baylis–Hillman Carbonates vol.349, pp.3, 2007, https://doi.org/10.1002/adsc.200600467
  36. All-Carbon Intramolecular Conjugate Displacement Reactions: An Effective Route to Carbocycles vol.46, pp.48, 2007, https://doi.org/10.1002/anie.200703022
  37. Morita-Baylis-Hillman Reactions Between Conjugated Nitroalkenes or Nitrodienes and Carbonyl Compounds vol.2009, pp.24, 2009, https://doi.org/10.1002/ejoc.200900475
  38. Enantioselective Synthesis of β-Iodo Morita-Baylis-Hillman Esters by a Catalytic Asymmetric Three-Component Coupling Reaction vol.121, pp.24, 2009, https://doi.org/10.1002/ange.200900351
  39. Enantioselective Synthesis of β-Iodo Morita-Baylis-Hillman Esters by a Catalytic Asymmetric Three-Component Coupling Reaction vol.48, pp.24, 2009, https://doi.org/10.1002/anie.200900351
  40. catalyst-free reactions of Baylis-Hillman acetates, alcohols, and amines with 2-aminobenzimidazole pp.19435193, 2010, https://doi.org/10.1002/jhet.324
  41. Synthesis of Exo-Methylenecyclopentane Derivatives via Radical Cyclization Starting from the Baylis-Hillman Adducts vol.27, pp.12, 2005, https://doi.org/10.5012/bkcs.2006.27.12.2097
  42. Synthesis of Cyclopropane Derivatives Starting from the Baylis-Hillman Adducts Using Sulfur Ylide Chemistry vol.27, pp.2, 2005, https://doi.org/10.5012/bkcs.2006.27.2.319
  43. Synthesis of 3,4-Disubstituted Pyridines Starting from Baylis-Hillman Adducts Using Schweizer Reaction vol.27, pp.3, 2005, https://doi.org/10.5012/bkcs.2006.27.3.439
  44. α-Vinylation of Haloquinones with Methyl Acrylate and MVK under Baylis-Hillman Reaction Conditions vol.27, pp.5, 2005, https://doi.org/10.5012/bkcs.2006.27.5.769
  45. Synthesis of Hexahydrofuro[2,3-b]furan and Hexahydrofuro[2,3-b]pyran Derivatives Starting from Baylis-Hillman Adducts via the Ueno-Stork Reaction vol.27, pp.6, 2006, https://doi.org/10.5012/bkcs.2006.27.6.929
  46. Synthesis of 2-Benzylidene-7a-alkyltetrahydropyrrolizine-3,5-diones Starting from Baylis-Hillman Adducts vol.27, pp.7, 2005, https://doi.org/10.5012/bkcs.2006.27.7.1063
  47. Synthesis of 3-Aryl-3-hydroxypyrrolidin-2-ones and 2-Benzyl-9b-hydroxy-3,3a,5,9b-tetrahydro-2H-pyrrolo[3,4-c]quinoline-1,4-dione Derivatives from the Baylis-Hillman Adducts of Isatins vol.27, pp.8, 2005, https://doi.org/10.5012/bkcs.2006.27.8.1133
  48. Baylis—Hillman Reaction and Chemical Transformations of Baylis—Hillman Adducts vol.37, pp.8, 2006, https://doi.org/10.1002/chin.200608234
  49. Synthesis of 3-aryl-3-hydroxypyrrolidin-2-ones and 2-benzyl-9b-hydroxy-3,3a,5,9b-tetrahydro-2H-pyrrolo[3,4-c]quinoline-1,4-dione derivatives from the Baylis–Hillman adducts of isatins vol.47, pp.20, 2006, https://doi.org/10.1016/j.tetlet.2006.03.074
  50. Synthesis of novel spiropyrrolidines through [3+2] cycloaddition reactions with Baylis–Hillman adducts as dipolarophiles vol.47, pp.31, 2005, https://doi.org/10.1016/j.tetlet.2006.05.149
  51. Regioselective construction of polysubstituted phenols from Baylis–Hillman adducts via formal [4+2] annulation strategy vol.47, pp.32, 2006, https://doi.org/10.1016/j.tetlet.2006.06.031
  52. Synthesis of β,γ-Disubstituted α-Methylene-γ-butyrolactams Starting from the Baylis-Hillman Adducts vol.28, pp.1, 2007, https://doi.org/10.5012/bkcs.2007.28.1.143
  53. Synthesis of 3-Benzyl- or 3-Benzoyl-7,8-dihydro-6H-chromene Derivatives Starting from Baylis-Hillman Adducts vol.28, pp.1, 2005, https://doi.org/10.5012/bkcs.2007.28.1.147
  54. Expeditious Synthesis of 1,3,4-Trisubstituted Pyrazoles from Baylis-Hillman Adducts vol.28, pp.10, 2007, https://doi.org/10.5012/bkcs.2007.28.10.1841
  55. Synthesis of Indoles and Benzisoxazolines from Baylis-Hillman Adducts of 2-Nitrobenzaldehydes vol.28, pp.2, 2005, https://doi.org/10.5012/bkcs.2007.28.2.333
  56. All-Carbon Intramolecular Conjugate Displacement Reactions: An Effective Route to Carbocycles vol.119, pp.48, 2005, https://doi.org/10.1002/ange.200703022
  57. An Expedient Synthesis of β-Phenyl Substituted Baylis-Hillman and Aza-Baylis-Hillman Adducts vol.29, pp.1, 2005, https://doi.org/10.5012/bkcs.2008.29.1.265
  58. Expedient Synthesis of 3-Benzoylflavones by PCC Oxidation of 3-Benzylideneflavanones vol.29, pp.10, 2005, https://doi.org/10.5012/bkcs.2008.29.10.2039
  59. Regioselective Synthesis of Poly-Substituted Pyrroles from Baylis-Hillman Adducts via the [3+1+N] Annulation Strategy vol.29, pp.11, 2008, https://doi.org/10.5012/bkcs.2008.29.11.2215
  60. One-Pot Synthesis of Naphthalenes from Baylis-Hillman Adducts via Pd-Mediated Successive Allylation and Arylation vol.29, pp.12, 2008, https://doi.org/10.5012/bkcs.2008.29.12.2537
  61. Synthesis of Poly-Substituted Phenolds from Baylis-Hillman Adducts and 1,3-Dinitroalkanes vol.29, pp.3, 2005, https://doi.org/10.5012/bkcs.2008.29.3.701
  62. Synthesis of β-Aryl Substituted N-Tosyl Aza-Baylis-Hillman Adducts: Heck Reaction of N-Tosyl Aza-Baylis-Hillman Adducts vol.29, pp.8, 2005, https://doi.org/10.5012/bkcs.2008.29.8.1583
  63. Stereoselective synthesis of 3-spiro-α-methylene-γ-butyrolactone oxindoles from Morita–Baylis–Hillman adducts of isatin vol.64, pp.15, 2005, https://doi.org/10.1016/j.tet.2008.02.002
  64. Pd-Mediated Cross-Coupling Reactions between the Bromide of Baylis-Hillman Adduct and Organostannanes vol.30, pp.3, 2009, https://doi.org/10.5012/bkcs.2009.30.3.726
  65. Expedient Synthesis of 5-Benzoylpyrimidine-2,4-diones from Baylis-Hillman Adducts vol.30, pp.4, 2005, https://doi.org/10.5012/bkcs.2009.30.4.938
  66. Synthesis of Rearranged N-Tosyl Aza-Baylis-Hillman Adducts under Acidic Conditions Catalyzed by CH3SO3H or Montmorillonite K10 vol.30, pp.4, 2005, https://doi.org/10.5012/bkcs.2009.30.4.941
  67. Expedient One-Pot Synthesis of γ-hydroxybutenolides Starting from Baylis-Hillman Adducts: Lactonization, Isomerization, and Aerobic Oxidation of α-Methylene-γ-hydroxyester vol.30, pp.5, 2009, https://doi.org/10.5012/bkcs.2009.30.5.1012
  68. An efficient ultrasound-promoted synthesis of the Baylis–Hillman adducts catalyzed by imidazole and L-proline vol.16, pp.4, 2005, https://doi.org/10.1016/j.ultsonch.2008.12.013
  69. A highly α-regioselective In(OTf)3-catalyzed N-nucleophilic substitution of cyclic Baylis–Hillman adducts with aromatic amines vol.65, pp.17, 2005, https://doi.org/10.1016/j.tet.2009.02.048
  70. The Rauhut-Currier reaction: a history and its synthetic application vol.65, pp.21, 2005, https://doi.org/10.1016/j.tet.2009.02.066
  71. One-Pot Synthesis of New Type Aza- Baylis-Hillman Adducts from Chlorovinyl Aldehydes under Solvent-Free Condition vol.34, pp.1, 2010, https://doi.org/10.3184/030823410x12627215361201
  72. Construction of a Tetracyclic Butterfly-Like Scaffold: Palladium-Catalyzed Heck/Arylation Cascade vol.16, pp.8, 2005, https://doi.org/10.1002/chem.200903029
  73. Facile Synthesis of N-Tosyl Aza-Baylis-Hillman Adducts of Acrylamide via a Pd-Catalyzed Hydration of Nitrile to Amide vol.31, pp.3, 2010, https://doi.org/10.5012/bkcs.2010.31.03.700
  74. Rauhut–Currier type homo- and heterocouplings involving nitroalkenes and nitrodienes vol.8, pp.21, 2010, https://doi.org/10.1039/c0ob00062k
  75. Remarkable Rate Acceleration of Baylis-Hillman Reaction of Notorious α,β-Unsaturated Aldehydes Catalyzed by Proton Donor vol.32, pp.3, 2011, https://doi.org/10.5012/bkcs.2011.32.3.1087
  76. Regioselective Synthesis of Fluorenones via the Consecutive In-Mediated Barbier Reaction, Pd-Catalyzed Cyclization, and Friedel-Crafts Reaction Starting from Baylis-Hillman Adducts vol.32, pp.4, 2011, https://doi.org/10.5012/bkcs.2011.32.4.1387
  77. Palladium-catalyzed synthesis of indane and cyclobuta[a]indenes from homoallylic alcohols derived from Baylis–Hillman adducts: base-dependent stereoselectivity for the benzylidene group in cyclo vol.67, pp.19, 2011, https://doi.org/10.1016/j.tet.2011.03.070
  78. Tandem reaction of Morita-Baylis-Hillman alcohols derived from acrylic nitrile with 2-aminobenzimidazole in ionic liquid [BMIM]Cl/H2O vol.90, pp.1, 2005, https://doi.org/10.1139/v11-095
  79. A Practical Synthesis of Morita-Baylis-Hillman Adducts of Aryl Vinyl Ketones Catalyzed by a Proton Donor vol.33, pp.6, 2005, https://doi.org/10.5012/bkcs.2012.33.6.2023
  80. One-Pot Synthesis of 5-Hydroxypyrrolin-2-one Derivatives from Modified Morita-Baylis-Hillman Adducts via a Consecutive CuI-Mediated Aerobic Oxidation, Allylic Iodination, Hydration of Nitrile, and Lac vol.33, pp.6, 2005, https://doi.org/10.5012/bkcs.2012.33.6.2079
  81. Organocatalyzed Baylis-Hillman reaction: an enantioselective approach vol.23, pp.17, 2005, https://doi.org/10.1016/j.tetasy.2012.08.013
  82. Regioselective Synthesis of 1,3,4,5-Tetrasubstituted Pyrazoles from α-Alkenyl-α,β-Enones Derived from Morita-Baylis-Hillman Adducts vol.34, pp.10, 2005, https://doi.org/10.5012/bkcs.2013.34.10.2915
  83. An Efficient Synthesis of Poly-Substituted Phenols and Pyridines from Morita-Baylis-Hillman Acetates and Diethyl Oxalacetate vol.34, pp.10, 2013, https://doi.org/10.5012/bkcs.2013.34.10.3027
  84. Copper-promoted cascade reaction of active methylenes with MBH-acetates of acetylenic aldehydes to functionalized cyclopentenes vol.4, pp.14, 2005, https://doi.org/10.1039/c3ra46229c
  85. An Expedient Approach for the Synthesis of 1-Alkyl-4-propionylpyrrolidin-2-ones vol.44, pp.1, 2005, https://doi.org/10.1080/00397911.2013.786091
  86. Enantioselective allylic amination of MBH carbonates catalyzed by novel chiral 4-dialkylaminopyridine catalysts vol.1, pp.10, 2014, https://doi.org/10.1039/c4qo00210e
  87. Mechanistic insights can resolve the low reactivity and selectivity issues in intermolecular Rauhut-Currier (RC) reaction of γ-hydroxyenone vol.44, pp.29, 2005, https://doi.org/10.1039/d0nj02732d
  88. Morita‐Baylis‐Hillman Reaction Accessing GABA Intermediates: Synthesis of New Lipophilic Hydroxylatedγ‐Nitroesters vol.5, pp.38, 2005, https://doi.org/10.1002/slct.202002824