DOI QR코드

DOI QR Code

Base-Promoted, Ketene-Forming Elimination Reactions. Mechanistic Borderline between E2 and E1cb Mechanisms

  • Published : 2005.07.20

Abstract

Elimination reactions of $XC_6H_4CH_2CO_2C_6H_3-2-Y-4-NO_2$ have been studied under various conditions. When X was moderately electron-withdrawing, Y = H, and base-solvent was $R_2$NH-MeCN, the reaction proceeded by the E2 mechanism via an E1cb-like transition state. Concave downward curve was noted in the Hammett plots. When X = 4-$NO_2$, Y = Cl, $CF_3,\;NO_2$, and the base-solvent was ${R_2NH/R_2NH_2}^+$ in 70 mol % MeCN(aq), the reaction proceeded by the E2 mechanism. The mechanism changed to a competing E2 and E1cb when X = 4-$NO_2$ and Y = H, MeO, and to the E1cb when X = 2,4-($NO_2)_2$, and Y = $NO_2$. From these results, a plausible pathway of the change of the mechanism from E2 to the E1cb extreme is proposed.

Keywords

References

  1. Saunders, W. H., Jr.; Cockerill, A. F. Mechanism of Elimination Reactions; Wiley: NewYork, 1973
  2. Bartsch, R. A.; Zavada, J. Chem. Rev. 1980, 80, 453 https://doi.org/10.1021/cr60328a001
  3. Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry; Harper and Row: New York, 1987; (a) pp 214-218, (b) pp 591-560, (c) pp 640-644
  4. Hoffamn, R. V.; Bartsch, R. A.; Cho, B. R. Acc. Chem. Res. 1989, 22, 211 https://doi.org/10.1021/ar00162a003
  5. Cho, B. R.; Suh, Y. W.; Pyun, S. Y. Bull. Korean Chem. Soc. 1990, 11, 79
  6. Cho, B. R.; Jung, J. H.; Ahn, E. K. J. Am. Chem. Soc. 1992, 114, 3425 https://doi.org/10.1021/ja00035a040
  7. Cho, B. R.; Pyun, S. Y. J. Am. Chem. Soc. 1991, 91, 3920
  8. Meng, Q.; Thibblin, A. J. Am. Chem. Soc. 1995, 117, 9399 https://doi.org/10.1021/ja00142a003
  9. Cho, B. R.; Cho, N. S.; Chung, H. S.; Son, K. N.; Han, M. S.; Pyun, S. Y. Bull. Korean Chem. Soc. 1997, 18, 1301
  10. Cho, B. R.; Jeong, H. C.; Seung, Y. J.; Pyun, S. Y. J. Org. Chem. 2002, 67, 5232 https://doi.org/10.1021/jo025555m
  11. Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry; Plenum Press: New York, 1984
  12. Oh, H. K.; Lee, J. M.; Sung, D. D.; Lee, I. C. Bull. Korean Chem. Soc. 2004, 25, 557 https://doi.org/10.5012/bkcs.2004.25.4.557
  13. Lee, H. W.; Lee, H. W.; Koh, H. H.; Lee, I. C. Bull. Korean Chem. Soc. 1998, 19, 642
  14. Gandler, J. R.; Jencks, W. P. J. Am. Chem. Soc. 1982, 104, 1937 https://doi.org/10.1021/ja00371a024
  15. Thibblin, A. J. Am. Chem. Soc. 1988, 110, 4582 https://doi.org/10.1021/ja00222a015
  16. Thibblin, A. J. Am. Chem. Soc. 1989, 111, 5412 https://doi.org/10.1021/ja00196a054
  17. Holmquist, B.; Bruice, T. C. J. Am. Chem. Soc. 1969, 91, 3003 https://doi.org/10.1021/ja01039a030
  18. Tagaki, W.; Kobayashi, S.; Kurihara, K.; Kurashima, K.; Yoshida, Y.; Yano, J. J. Chem. Soc., Chem. Commum. 1976, 843
  19. Chandrasekar, R.; Venkatasubramanian, N. J. Chem. Soc., Perkin Trans. 2 1982, 1625
  20. Broxton, T. J.; Duddy, N. W. J. Org. Chem. 1981, 46, 1186 https://doi.org/10.1021/jo00319a028
  21. Chung, S. Y.; Yoh, S. D.; Choi, J. H.; Shim, K. T. J. Korean Chem. Soc. 1992, 36, 446
  22. Holmquist, B.; Bruice, T. C. J. Am. Chem. Soc. 1969, 91, 2993 https://doi.org/10.1021/ja01039a029
  23. Pratt, R. F.; Bruice, T. C. J. Am. Chem. Soc. 1970, 92, 5956 https://doi.org/10.1021/ja00723a024
  24. Inoue, M.; Bruice, T. C. J. Am. Chem. Soc. 1982, 104, 1644 https://doi.org/10.1021/ja00370a033
  25. Inoue, M.; Bruice, T. C. J. Org. Soc. 1982, 51, 959
  26. Isaac, N. S.; Najem, T. S. J. Chem. Soc., Perkin Trans. 2 1988, 557
  27. Douglas, K. T.; Alborz, M.; Rullo, G. R.; Yaggi, N. F. J. Chem. Soc., Chem. Commum. 1982, 242
  28. William, A. J. Chem. Soc., Perkin Trans. 2 1972, 808
  29. Williams, A.; Douglas, K. T. Chem. Rev. 1975, 627
  30. Gandler, J. R. In The Chemistry Double Bonded Functional Groups; Patai, S., Ed.; Chichester, New York, 1989; Vol. 2, Part 1, pp 734-797
  31. Young, P. R.; Jencks, W. P. J. Am. Chem. Soc. 1979, 101, 3288 https://doi.org/10.1021/ja00506a025
  32. Drago, R. S.; Zoltewiez, J. A. J. Org. Chem. 1994, 59, 2824 https://doi.org/10.1021/jo00089a031
  33. Yoshida, T.; Yano, Y.; Oae, S. Tetrahedron 1971, 27, 5343 https://doi.org/10.1016/S0040-4020(01)91699-0
  34. Um, I. H.; Chun, S. M.; Bae, S. K. Bull. Korean Chem. Soc. 2005, 26, 457 https://doi.org/10.5012/bkcs.2005.26.3.457
  35. Um, I. H.; Chun, S. M.; Bae, S. K. Bull. Korean Chem. Soc. 2005, 26, 457 https://doi.org/10.5012/bkcs.2005.26.3.457
  36. Um, I. H.; Lee, E. J.; Lee, J. P. Bull. Korean Chem. Soc. 2002, 23, 381 https://doi.org/10.5012/bkcs.2002.23.3.381
  37. Bunnett, J. F.; Sridharan, S.; Cavin, W. P. J. Org. Chem. 1979, 44, 1458 https://doi.org/10.1021/jo01323a021
  38. Hasan, T.; Sim, B.; Fry, A. J. Am. Chem. Soc. 1983, 105, 3967 https://doi.org/10.1021/ja00350a038
  39. Cabaleiro, M. C.; Montani, R. S. J. Chem. Res. (S) 1986, 220
  40. Jencks, W. P. Chem. Rev. 1985, 85, 511 https://doi.org/10.1021/cr00070a001
  41. Gandler, J. R.; Yokohama, T. J. Am. Chem. Soc. 1984, 106, 130 https://doi.org/10.1021/ja00313a027
  42. Gandler, J. R.; Storer, J. W.; Ohlberg, D. A. A. J. Am. Chem. Soc. 1990, 112, 7756 https://doi.org/10.1021/ja00177a041
  43. MicroCal Origin Version 3.5; MicroCal Software, Inc.: Northampton, MA, 1991
  44. Cho, B. R.; Lee, S. J.; Kim, Y. K. J. Org. Chem. 1995, 60, 2072 https://doi.org/10.1021/jo00112a030
  45. Cho, B. R.; Kim, N. S.; Kim, Y. K.; Son, K. H. J. Chem. Soc., Perkin Trans. 2 2000, 1419
  46. Cho, B. R.; Kim, Y. K.; Seong, Y. J.; Kim, J. C.; Pyun, S. Y. J. Org. Chem. 2000, 65, 1239 https://doi.org/10.1021/jo991473v
  47. Pyun, S. Y.; Lee, D. C.; Kim, J. C.; Cho, B. R. Org. Biomol. Chem. 2003, 1, 2734 https://doi.org/10.1039/b303231k
  48. Cho, B. R.; Kim, Y. K.; Maing Yoon, C. O. J. Am. Chem. Soc. 1997, 119, 691 https://doi.org/10.1021/ja961294k

Cited by

  1. in 70 mol% MeCN(aq). Effects of β-Aryl on the Ketene-Forming Transition-State vol.35, pp.7, 2014, https://doi.org/10.5012/bkcs.2014.35.7.2143