DOI QR코드

DOI QR Code

Synthesis and Characterization of Gallium Nitride Powders and Nanowires Using Ga(S2CNR2)3(R = CH3, C2H5) Complexes as New Precursors

  • Jung, Woo-Sik (School of Chemical Engineering and Technology, College of Engineering, Yeungnam University) ;
  • Ra, Choon-Sup (Department of Chemistry, Yeungnam University) ;
  • Min, Bong-Ki (Instrumental Analysis Center, Yeungnam University)
  • Published : 2005.01.20

Abstract

Gallium nitride (GaN) powders and nanowires were prepared by using tris(N,N-dimethyldithiocarbamato)gallium(III) (Ga(DmDTC)$_3$) and tris(N,N-diethyldithiocarbamato)gallium(III) (Ga(DeDTC)$_3$) as new precursors. The GaN powders were obtained by reaction of the complexes with ammonia in the temperature ranging from 500 to 1100 ${^{\circ}C}$. The process of conversion of the complexes to GaN was monitored by their weight loss, XRD, and $^{71}$Ga magic-angle spinning (MAS) NMR spectroscopy. Most likely the complexes decompose to $\gamma$ -Ga$_2$S$_3$ and then turn into GaN via amorphous gallium thionitrides (GaS$_x$N$_y$). The reactivity of Ga(DmDTC)$_3$ with ammonia was a little higher than that of Ga(DeDTC)$_3$. Room-temperature photoluminescence spectra of asprepared GaN powders exhibited the band-edge emission of GaN at 363 nm. GaN nanowires were obtained by nitridation of as-ground $\gamma$ -Ga$_2$S$_3$ powders to GaN powders, followed by sublimation without using templates or catalysts.

Keywords

References

  1. Ambacher, O. J. Phys. D.: Appl. Phys. 1998, 31, 2653 https://doi.org/10.1088/0022-3727/31/20/001
  2. Kurai, S.; Naoi, Y.; Abe, T.; Ohmi, S.; Sakai, S. Jpn. J. Appl. Phys. 1996, 35, L77 https://doi.org/10.1143/JJAP.35.L77
  3. Porowski, S. J. Cryst. Growth 1966, 166, 583 https://doi.org/10.1016/0022-0248(96)00116-9
  4. Balkas,, C. M.; Davis, R. F. J. Am. Ceram. Soc. 1996, 79, 2309 https://doi.org/10.1111/j.1151-2916.1996.tb08977.x
  5. Cho, S.; Lee, J.; Park, I. Y.; Kim, S. Mater. Sci. Eng. 2002, B95, 275
  6. Jung, W.-S.; Min, B.-K. Mater. Lett. 2004, 58, 3058 https://doi.org/10.1016/j.matlet.2004.05.042
  7. Jung, W.-S.; Park, C.; Han, S. Bull. Korean Chem. Soc. 2003, 24, 1011 https://doi.org/10.5012/bkcs.2003.24.7.1011
  8. Jung, W.-S. Bull. Korean Chem. Soc. 2004, 25, 51 https://doi.org/10.5012/bkcs.2004.25.1.051
  9. Jung, W.-S. J. Korean Ceram. Soc. 2003, 40, 1058 https://doi.org/10.4191/KCERS.2003.40.11.1058
  10. Jian, J.; Chen, X. L.; He, M.; Wang, W. J.; Zhang, X. N.; Shen, F. Chem. Phys. Lett. 2003, 368, 416 https://doi.org/10.1016/S0009-2614(02)01909-7
  11. Zhou, S. M.; Feng, Y. S.; Zhang, L. D. Chem. Phys. Lett. 2003, 369, 610 https://doi.org/10.1016/S0009-2614(03)00042-3
  12. Dutta, D. P.; Jain, V. K.; Knoedler, A.; Kaim, W. Polyhedron 2002, 21, 239 https://doi.org/10.1016/S0277-5387(01)00990-1
  13. JCPDS Card No. 430916
  14. Jung, W.-S. Mater. Lett. 2002, 57, 110 https://doi.org/10.1016/S0167-577X(02)00713-9
  15. Han, O. H.; Timken, H. K. C.; Oldfield, E. J. Chem. Phys. 1988, 89, 6046 https://doi.org/10.1063/1.455418

Cited by

  1. Powder‐XRD and 14N magic angle‐spinning solid‐state NMR spectroscopy of some metal nitrides vol.54, pp.5, 2005, https://doi.org/10.1002/mrc.4395
  2. Debye function analysis of nanocrystalline gallium oxide γ-Ga2O3 vol.231, pp.5, 2005, https://doi.org/10.1515/zkri-2015-1895