DOI QR코드

DOI QR Code

Determination of the Optical Functions of Various Liquids by Rotating Compensator Multichannel Spectroscopic Ellipsometry

  • Published : 2005.06.20

Abstract

Rotating compensator multichannel spectroscopic ellipsometry has been employed to determine the optical functions of various liquids used in chemistry. We attempted three different measurement configurations: (1) air-liquid interface, (2) prism-liquid interface, and (3) liquid-sample interface. In prism-liquid interface, we found that the prism surface had roughness and it should be considered in analysis for accurate results. In liquidsample interface, we had much higher reflection, better sensitivity, and less limitation compared to the other two configurations when crystalline silicon was used as reference sample. We discuss the merit of each configuration and present the optical functions of various liquids. Also we demonstrate Bruggeman effective medium theory to determine the optical properties of mixed liquid.

Keywords

References

  1. Kim, Y.-T.; Collins, R. W.; Vedam, K. Surf. Sci. 1990, 223, 341
  2. Kim, Y.-T.; Collins, R. W.; Vedam, K.; Allara, D. L. J. Electrochem. Soc. 1991, 138, 3266 https://doi.org/10.1149/1.2085401
  3. Witham, H. S.; Chindaudom, P.; An, I.; Collins, R. W.; Messier, R.; Vedam, K. J. Vac. Sci. Technol. A 1993, 11, 1881 https://doi.org/10.1116/1.578517
  4. Arwin, H. Thin Solid Films 1998, 313-314, 764 https://doi.org/10.1016/S0040-6090(97)00993-0
  5. Hui, D.; Kim, J.; Kim, Y.-T.; An, I.; Paley, M. S. Thin Solid Films 2003, 437, 127 https://doi.org/10.1016/S0040-6090(03)00677-1
  6. James, A.; Lord, M. VNR Index of Chemical and Physical Data; Van Nostrand Reinhold: New York, 1992
  7. Grassi, J. H.; Georgiadis, R. M. Anal. Chem. 1999, 71, 4392 https://doi.org/10.1021/ac990125q
  8. Moreels, E.; de Greef, C.; Finsy, R. Appl. Opt. 1984, 23, 3010 https://doi.org/10.1364/AO.23.003010
  9. Murty, M. V. R. K.; Shukla, R. P. Opt. Eng. 1983, 22, 227
  10. An, I.; Collins, R. W. Rev. Sci. Instrum. 1991, 62, 1904 https://doi.org/10.1063/1.1142390
  11. Cahan, B. D.; Spanier, R. F. Surf. Sci. 1969, 16, 166 https://doi.org/10.1016/0039-6028(69)90015-6
  12. Aspnes, D. E.; Studna, A. A. Appl. Opt. 1975, 14, 220 https://doi.org/10.1038/014220a0
  13. Opsal, J.; Fanton, J.; Chen, J.; Leng, J.; Wei, L.; Uhrich, C.; Senko, M.; Zaiser, C.; Aspnes, D. E. Thin Solid Films 1998, 313-314, 58 https://doi.org/10.1016/S0040-6090(97)00769-4
  14. Lee, J.; Rovira, P. I.; An, I.; Collins, R. W. Rev. Sci. Instrum. 1998, 69, 1800 https://doi.org/10.1063/1.1148844
  15. An, I.; Lee, J.; Bang, K.; Kim, O.; Oh, H. Jpn. J. Appl. Phys. 2003, 42, 2872 https://doi.org/10.1143/JJAP.42.2872
  16. Bruggeman, D. A. G. An. Phys. 1935, 24, 636
  17. Pelik, D. Handbook of Optical Constants of Solids; Academic Press: New York, 1985
  18. Aspnes, D. E.; Theeten, J. B.; Hotier, F. Phys. Rev. 1979, B20, 3292
  19. Lee, J.; Bang, K.; Kim, O.; Oh, H.; An, I.; Choi, C.; Park, C. Jpn. J. Appl. Phys. 2003, 42, 1416 https://doi.org/10.1143/JJAP.42.1416
  20. Koh, J.; Lu, Y.; Wronski, C. R.; Collins, R. W. Appl. Phys. Lett. 1996, 69, 1297 https://doi.org/10.1063/1.117397
  21. Mehra, R. Proc. Indian Acad. Sci. 2003, 115, 147

Cited by

  1. Comparison of Methods and Achievable Uncertainties for the Relative and Absolute Measurement of Photoluminescence Quantum Yields vol.83, pp.9, 2011, https://doi.org/10.1021/ac2000303
  2. Surface Structure of a Hydrophobic Ionic Liquid Probed by Spectroscopic Ellipsometry vol.116, pp.8, 2012, https://doi.org/10.1021/jp2109847
  3. Optical Properties of Sodium Chloride Solution within the Spectral Range from 300 to 2500 nm at Room Temperature vol.69, pp.5, 2015, https://doi.org/10.1366/14-07769R
  4. molecular dynamics study of temperature and pressure-dependent infrared dielectric functions of liquid methanol vol.7, pp.3, 2017, https://doi.org/10.1063/1.4978899
  5. Real-time spectroscopic ellipsometry for protein adsorption study and pH effect vol.5, pp.5, 2008, https://doi.org/10.1002/pssc.200777826
  6. Three-pulse photon echo peak shift in optically dense samples vol.457, pp.1, 2005, https://doi.org/10.1016/j.cplett.2008.03.092
  7. Analytical Dielectric Spectrum Formula Based on Representative Frequencies vol.22, pp.3, 2005, https://doi.org/10.1088/1674-0068/22/03/262-268
  8. Continuum Model for Electronic Polarization Based on a Novel Dielectric Response Function vol.22, pp.5, 2005, https://doi.org/10.1088/1674-0068/22/05/481-488
  9. Wavelength and concentration-dependent optical constants of NaCl, KCl, MgCl_2, CaCl_2, and Na_2SO_4 multi-component mixed-salt solutions vol.56, pp.27, 2005, https://doi.org/10.1364/ao.56.007662
  10. Temperature-dependent optical constants of liquid isopropanol, n-butanol, and n-decane vol.57, pp.12, 2005, https://doi.org/10.1364/ao.57.003003
  11. Determination of the refractive indices of ionic liquids by ellipsometry, and their application as immersion liquids vol.57, pp.31, 2018, https://doi.org/10.1364/ao.57.009215
  12. Spectral and photophysical modifications of porphyrins attached to core-shell nanoparticles. Theory and experiment vol.9, pp.4, 2005, https://doi.org/10.1088/2050-6120/ac1400