Synthesis of Substituted Uracil Derivatives from the Acetates of the Baylis-Hillman Adducts

Chang Gon Lee, Saravanan Gowrisankar, and Jae Nyoung Kim*
Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 500-757, Korea
*E-mail: kimjn@chonnam.ac.kr Received December 20, 2004

Key Words : Uracils, Baylis-Hillman adducts, DABCO

The Baylis-Hillman adducts have been used for the synthesis of a variety of carbocycles and heterocycles. ${ }^{1-3}$ However, to the best of our knowledge, synthesis of pyrimidine-2,4-dione skeleton (simply as uracil ring) starting from the Baylis-Hillman adducts has not been published.

A broad spectrum of antiviral activity has been described for 5 -substituted pyrimidine nucleosides. ${ }^{4,5}$ Although many approaches for the synthesis of 5 -substituted pyrimidine bases have been reported, ${ }^{4,5}$ a new synthetic method of 5substituted uracil derivatives are still of particular interest in terms of new drug development. Recently, Knochel and coworkers reported the synthesis of 5-benzyl substituted uracil derivatives from zincated thymine derivatives and aryl iodide in the presence of palladium reagent. ${ }^{6}$ We described herein a novel synthesis of 5-substituted uracils from BaylisHillman adducts.

During the investigations on the Baylis-Hillman chemistry ${ }^{2,7}$ we presumed that we could prepare 5 -substituted uracils by following Scheme 1. Introduction of amine at the Baylis-Hillman acetate $\mathbf{1}$ could afford 2 and $\mathbf{6}$ depending upon the reaction conditions (vide infra). ${ }^{7}$ Synthesis of urea derivatives was carried out by using KOCN or benzyl isocyanate to form $\mathbf{3}$ and 7, and the following cyclization of the urea derivatives with alkoxide base would give the pyrimidine-2,4-dione skeletons 5 and 9 . We expected that the corresponding intermediates with exo-double bond, 4 and 8 , could be converted easily into the endo form, 5 and 9 , during the reaction.

Synthesis of N-substituted cinnamylamine derivatives 2 was carried out from the reaction of $\mathbf{1}$ and amine compounds in DMF in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in moderate yields. The N-substituted urea derivatives, 3a, 3b and $\mathbf{3 d}$, were prepared

Scheme 1

Table 1. Synthesis of substituted uracil derivatives 5a-d and 9a-b

Entryconditions ${ }^{\text {a }}$	$\mathrm{s}^{a} 3$ and 7 (\%)	conditions ${ }^{\text {b }}$	5 and 9 (\%)
$\begin{array}{ll} & \text { 2a, } \mathrm{KOCN} \\ 1 & \text { aq. AcOH } \\ & \mathrm{rt}, 1 \mathrm{~h} \end{array}$		NaOEt , EtOH reflux, 2 h	
$\begin{aligned} & \text { 2b, } \mathrm{KOCN} \\ & 2 \text { aq. } \mathrm{AcOH} \\ & \text { rt, } 3 \mathrm{~h} \end{aligned}$		NaOEt , EtOH reflux, 1 h	
2b, BnNCO 3 toluene $\mathrm{rt}, 12 \mathrm{~h}$		t-BuOK, t-BuOH reflux, 1 h	
2c. KOCN 4 aq. AcOH $\mathrm{rt}, 60 \mathrm{~h}^{\mathrm{c}}$ 3		t-BuOK, t-BuOH reflux, 10 h	
$\begin{aligned} & \text { 6a, } \mathrm{KOCN} \\ & 5 \\ & \text { aq. AcOH } \\ & \text { rt, } 7 \mathrm{~h} \end{aligned}$		t-BuOK, toluene reflux, 1 h	
$\begin{aligned} & \text { 6b, KOCN } \\ & 6 \begin{array}{l} \text { aq. } \mathrm{AcOH} \\ \text { rt, } 7 \mathrm{~h} \end{array} \end{aligned}$		t-BuOK, toluene reflux, 1 h	
6b, BnNCO 7 toluene rt, 12 h		t-BuOK, toluene reflux, 5 h	5c (50)

${ }^{a} \mathrm{KOCN}$ (2 equiv) and BnNCO (2 equiv) were used. ${ }^{b} \mathrm{NaOEt}$ (2 equiv) and t-BuOK (1.2 equiv) were used. ${ }^{c}$ The reaction was carried out by slow addition of excess amounts of aq. KOCN (4 equiv).
from the reaction of the corresponding cinnamylamine compounds 2 with KOCN (2 equiv) in aqueous acetic acid in moderate yields at room temperature. N,N-Disubstituted urea derivative $\mathbf{3 c}$ was synthesized from the reaction of $\mathbf{2 b}$ and benzyl isocyanate. With these urea compounds 3a-d in our hands, we examined various conditions for the effective cyclization toward 5 -substituted uracil skeleton. Among them the use of NaOEt or t-BuOK was found to be the best choice. As shown in Table 1, 3a-d was converted into the desired uracils 5a-d in short time with NaOEt or t-BuOK in moderate yields.
In order to prepare 5,6-disubstituted uracils 9, we introduced some amine molecules at the secondary position of the Baylis-Hillman adduct according to the well-known protocol involving the use of DABCO salt concept ${ }^{7}$ to make 6a and 6b. Corresponding urea derivatives 7a-c was

NaOEt, EtOH, reflux, $5 \mathrm{~h}: \mathbf{8 a}(4 \%), 9 \mathrm{a}(11 \%), 10$ (57%) t-BuOK, t-BuOH, reflux, 4 h : 8 a (27\%), 9 a (23\%) t-BuOK, toluene, reflux, $1 \mathrm{~h}: 9 \mathrm{a}(65 \%)$

$\mathrm{NaOEt}, \mathrm{EtOH}$, reflux, 5 h : 8b (5\%), 9b (5\%), 11 (55\%)
t-BuOK, t-BuOH, reflux, 2 h: 8b (39\%), 9b (46\%)
t-BuOK, toluene, reflux, 1 h : $\mathbf{9 b}$ (72%)

Scheme 2

prepared as before (vide supra). However, the use of NaOEt in the cyclization stage to the desired 9 caused some problems. In the reaction mixture of $7 \mathbf{a} / \mathrm{NaOEt} / \mathrm{EtOH}$, we found the formation of variable amounts of $\mathbf{8 a}, \mathbf{9 a}$, and $\mathbf{1 0}$ (Scheme 2). The compound $\mathbf{1 0}$ might be generated by the Michael type addition of ethanol at the exo-methylene double bond of $\mathbf{8 a}$. Thus, we changed the base as a nonnucleophilic t-BuOK. However, the use of t-BuOK in t BuOH also did not produce the desired 9 a in high yield. Appreciable amounts of 8a (27%) were isolated together with 9a (23\%). The effective synthesis of 9 a was finally achieved when we used t-BuOK in toluene at refluxing temperature (Scheme 2 and entry 5 in Table 1). Similarly, the use of $\mathrm{NaOEt} / \mathrm{EtOH}$ or $t-\mathrm{BuOK} / t-\mathrm{BuOH}$ did not give high yield of 9b from 7b as shown in Scheme 2. Fortunately, the use of t-BuOK in toluene gave $\mathbf{9 b}$ in good yield (entry 6 in Table 1).

It is interesting to note that the reaction of $7 \mathbf{c} / t-\mathrm{BuOK}$ in toluene afforded $5 \mathbf{c}$ in moderate yield, unexpectedly, instead of the expected 5,6-disubstituted uracil derivative. The plausible reaction mechanism is depicted in Scheme 3. The urea moiety of $7 \mathbf{c}$ rearranged to the primary position to give the thermodynamically more stable form. Then the following cyclization gave 5 c .

In summary, we disclosed facile synthesis of a variety of 5-substituted and 5,6-disubstituted uracil derivatives starting from the acetates of the Baylis-Hillman adducts. We think that this method could be used successfully for the synthesis of biologically active nucleoside derivatives.

Experimental Section

Synthesis of starting materials: The starting materials 2a-c were synthesized from the acetate of the BaylisHillman adduct 1 and aniline, benzylamine, and 1 -aminoindan, respectively, in DMF in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ according to the literature method. ${ }^{3,7}$ Synthesis of $\mathbf{6 a}$ and $\mathbf{6 b}$ was carried out according to the reported method using the corresponding DABCO salt of $\mathbf{1}$ and aniline or benzylamine in aq. THF. ${ }^{3,7}$ These starting materials 2a-c, $\mathbf{6 a}$, and $\mathbf{6 b}$ were used for the synthesis of urea derivatives 3a-d and 7a-c. Synthesis of mono-substituted ureas ($\mathbf{3 a}, \mathbf{3 b}, \mathbf{3 d}, \mathbf{7 a}, \mathbf{7 b}$) was carried out with KOCN (2 equiv) in aq. AcOH at room temperature. N, N-Disubstituted urea derivatives ($\mathbf{3 c}$ and $7 \mathbf{c}$) were synthesized easily from 2b and $\mathbf{6 b}$ with benzyl isocyanate (2 equiv) in toluene. The spectroscopic data of prepared starting urea derivatives 3a-d and 7a-c are as follows.
3a: 58%; white solid, mp 134-135 ${ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3487$, $1716,1670,1593 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.71(\mathrm{~s}, 3 \mathrm{H})$, 4.49 (br s, 2H), 4.89 (s, 2H), 6.97-7.35 (m, 10H), 7.68 (s, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 44.21,52.26,128.21,128.55$, 128.60, 129.01, 129.04, 129.51, 129.77, 134.70, 140.66, 143.49, 157.73, 168.30.

3b: 79%; white solid, mp $148-149{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3437$, $1701,1670 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.84(\mathrm{~s}, 3 \mathrm{H}), 4.21(\mathrm{~s}$, $2 \mathrm{H}), 4.29(\mathrm{~s}, 2 \mathrm{H}), 5.18(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 6.77-6.81(\mathrm{~m}, 2 \mathrm{H}), 7.05-$ $7.37(\mathrm{~m}, 8 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 42.31$, 48.45 , $52.40,126.81,127.60,128.09,128.68,128.89$, 128.98, 129.11, 134.09, 137.42, 143.08, 159.96, 168.61.

3c: 95%; clear oil; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3359,1712,1647,1531$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.76(\mathrm{~s}, 3 \mathrm{H}), 4.27(\mathrm{~s}, 2 \mathrm{H}), 4.29(\mathrm{~s}$, $2 \mathrm{H}), 4.38(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.93(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH})$, 6.83-6.88 (m, 2H), 7.06-7.35 (m, 13H), $7.83(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 42.33,45.24,49.26,52.56,127.03,127.12$, $127.77,127.98,128.37,128.59,128.89,129.18,129.37$, 129.62, 134.28, 138.14, 139.97, 142.85, 159.10, 168.79.

3d: 65\%; clear oil; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3479,1709,1666,1597$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.87-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.26(\mathrm{~m}$, $1 \mathrm{H}), 2.64(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 4.41$ (d, $J=15.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 2 \mathrm{H}), 5.35(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-7.33(\mathrm{~m}, 9 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 28.92,30.12,42.77,52.39,61.57,124.34,125.25$, 126.55, 127.80, 128.45, 129.01, 129.50, 130.41, 134.16, 141.50, 141.92, 142.90, 160.64, 168.75.

7a: 81%; white solid, mp $110-111{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3487$, 1724, 1674, $1593 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.69(\mathrm{~s}, 3 \mathrm{H})$, $4.47(\mathrm{~s}, 2 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 7.08-$ $7.28(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 52.16,62.69,127.50$, $127.62,128.23,128.39,129.23,129.57,130.19,138.42$, 140.69, 140.72, 157.60, 167.09.

7b: 70%; white solid, mp $142-143{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3386$, 1720, 1666, $1597 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.58(\mathrm{~s}, 3 \mathrm{H})$, 4.34 (d, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.95$ (s, $2 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{~s}, 2 \mathrm{H}), 7.02-7.29(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 48.74,52.14,60.19,126.99,127.15$, 127.92, 127.97, 128.44, 128.47, 128.74, 137.70, 137.73,
139.98, 159.94, 166.66.

7c: 82%; yellow oil; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3437,3363,1724,1643$, $1520 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.57(\mathrm{~s}, 3 \mathrm{H}), 4.32(\mathrm{~d}, J=$ $16.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.35$ (d, $J=5.3 \mathrm{~Hz}, 2 \mathrm{H}$), 4.73 (d, $J=16.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.87(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 6.48$ $(\mathrm{s}, 1 \mathrm{H}), 7.01-7.30(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 45.03$, 48.68, 52.17, 60.21, 127.05, 127.10, 127.23, 127.28, 127.81, $127.92,128.48,128.53,128.55,128.81,137.99,138.05$, 139.30, 140.26, 158.39, 166.77.

Typical procedure for the synthesis of uracil derivative 5a: To a stirred solution of $\mathbf{3 a}(310 \mathrm{mg}, 1 \mathrm{mmol})$ in ethanol $(1 \mathrm{~mL})$ was added a solution of $\mathrm{NaOEt}(21 \%$ solution in $\mathrm{EtOH}, 650 \mathrm{mg}, 2 \mathrm{mmol}$) and the reaction mixture was heated to reflux for 2 h . After the usual workup and column chromatographic purification (hexanes/EtOAc, $3: 1$) process, we obtained the desired compound $\mathbf{5 a}$ as a white solid, 195 $\mathrm{mg}(70 \%)$. Synthesis of other uracil derivatives was carried out similarly and the spectroscopic data of prepared uracil derivatives 5a-d, 9a and $\mathbf{9 b}$ are as follows.

5a: 70%; white solid, mp $129-130{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3186$, $1682 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.70(\mathrm{~s}, 2 \mathrm{H}), 6.96(\mathrm{t}, J=0.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.19-7.46(\mathrm{~m}, 10 \mathrm{H}), 9.26$ (br s, 1 H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 32.63,115.59,126.45,126.93,128.86,128.94$, 129.16, 129.71, 138.25, 138.74, 141.68, 150.30, 163.79; Mass (70 eV) m/z (rel. intensity) 51 (100), 65 (23), 77 (73), 130 (70), 206 (35), 278 ($\mathrm{M}^{+}, 17$).
5b: 80%; white solid, mp $170-171{ }^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3209$, $1693 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.61(\mathrm{~s}, 2 \mathrm{H}), 4.82(\mathrm{~s}, 2 \mathrm{H})$, $6.73(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.38(\mathrm{~m}, 10 \mathrm{H}), 9.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 32.65,51.40,115.52,126.88,128.12$, $128.62,128.88,129.12,129.26,135.51,138.29,141.02$, 151.09, 163.65; Mass (70 eV) m/z (rel. intensity) 65 (33), 76, (17), 91 (100), 115 (13), 201 (15), $292\left(\mathrm{M}^{+}, 15\right)$.

5c: 60%; clear oil; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 1701,1658 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.62(\mathrm{~s}, 2 \mathrm{H}), 4.81(\mathrm{~s}, 2 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 6.72(\mathrm{t}, \mathrm{J}=$ $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.50(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 33.38$, 44.94, 52.41, 114.65, 126.79, 127.74, 128.00, 128.49, 128.56, 128.82, 129.12, 129.18, 129.26, 135.66, 137.12, 138.37, 139.19, 151.68, 163.20; Mass (70 eV) m/z (rel. intensity) 65 (15), 91 (100), 248 (10), 291 (27), 382 ($\mathrm{M}^{+}, 15$).

5d: 71%; white solid, $\mathrm{mp} 200-201{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 1678$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.81-1.94(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.70(\mathrm{~m}$, $1 \mathrm{H}), 2.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.53(\mathrm{~s}, 2 \mathrm{H}), 6.14(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 7.04-7.32(\mathrm{~m}, 9 \mathrm{H}), 9.41(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 30.10,32.57$ (two carbon by ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ COSY), $60.47,115.13,124.42,125.24,126.40,127.34$, 128.46, 128.63, 128.91, 138.00, 138.18, 139.30, 144.05, 151.30, 163.23.

9a: 65%; white solid, $\mathrm{mp} 249-250{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 1693$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}_{6}\right) \delta 1.73(\mathrm{~s}, 3 \mathrm{H}), 6.99-$ $7.20(\mathrm{~m}, 10 \mathrm{H}), 10.78$ (br s, 1H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}+$ DMSO$\left.\mathrm{d}_{6}\right) \delta 11.92,109.04,127.81,127.89,128.36,128.42,128.58$, 129.23, 132.48, 137.00, 150.81, 150.91, 164.16.

9b: 72%, white solid, mp $172-173{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3182$, $1682,1466 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.63(\mathrm{~s}, 3 \mathrm{H}), 4.82(\mathrm{~s}$, 2H), 6.81-6.97 (m, 4H), 7.17-7.44 (m, 6H), 9.46 (br s, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 12.30,48.96,110.39,127.01,127.63$,
$128.45,128.60,128.98,129.72,132.49,136.84,151.78$, 152.10, 164.12; Mass (70 eV) m / z (rel. intensity) 65 (11), 91 (100), 115 (9), $292\left(\mathrm{M}^{+}, 26\right)$.

Spectroscopic data of the intermediate exo-methylene compounds $\mathbf{8 a}$ and $\mathbf{8 b}$, and the Michael-addition products $\mathbf{1 0}$ and $\mathbf{1 1}$ are as follows.
8a: 27\%; clear oil; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3213,1701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.52(\mathrm{~s}, 1 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 7.17-7.38$ $(\mathrm{m}, 10 \mathrm{H}), 8.33(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 66.29$, 125.75, 126.16, 126.23, 127.33, 128.73, 129.35, 129.42, 136.01, 138.90, 140.44, 151.62, 162.91; Mass (70 eV) m/z (rel. intensity) 51 (16), 77 (37), 138 (56), 206 (73), $278\left(\mathrm{M}^{+}\right.$, 100).

8b: 39%; white solid, mp $189-190{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 1705$, $1670,1485,1227 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.70(\mathrm{~d}, J=15.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}), 5.47(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H})$, $6.36(\mathrm{~s}, 1 \mathrm{H}), 7.18-7.41(\mathrm{~m}, 10 \mathrm{H}), 8.45(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 48.37,61.28,126.32,126.50,128.13,128.26$, 128.86, 129.07, 129.61, 135.79, 136.04, 138.84, 152.57, 162.67; Mass (70 eV) m/z (rel. intensity) 65 (20), 91 (100), 116 (84), 188 (48), 292 ($\mathrm{M}^{+}, 26$).
10: 57%; clear oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.24(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 3.12-3.17(\mathrm{~m}, 1 \mathrm{H}), 3.54-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.77-3.81(\mathrm{~m}$, $1 \mathrm{H}), 3.89-3.95(\mathrm{~m}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.38$ $(\mathrm{m}, 10 \mathrm{H}), 8.37(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 15.22,50.59$, 61.98, 67.06, 68.55, 126.21, 126.36, 127.23, 128.45, 129.26, 129.34, 138.82, 140.98, 151.75, 169.53; Mass (70 eV) m/z (rel. intensity) 55 (41), 77 (100), 91 (49), 119 (36), 180 (25), 324 ($\mathrm{M}^{+}, 1$).
11: 55\%; clear oil; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3217,1705 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.97(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.84-3.02(\mathrm{~m}, 2 \mathrm{H}), 3.17-$ $3.37(\mathrm{~m}, 2 \mathrm{H}), 3.50(\mathrm{dd}, J=8.7$ and $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=$ $14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.69$ (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=14.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.17-7.40(\mathrm{~m}, 10 \mathrm{H}), 9.03(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 14.96,48.90,50.48,56.50,66.58,67.92,126.25,128.07$, $128.45,128.77,129.09,129.39,136.59,138.28,152.98$, 169.32.

Acknowledgments. This work was supported by Korea Research Foundation Grant (KRF-2002-015-CP0215). Spectroscopic data was obtained from the Korea Basic Science Institute, Gwangju branch.

References and Notes

1. For the review articles of Baylis-Hillman reaction, see (a)

Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811. (b) Kim, J. N.; Lee, K. Y. Curr. Org. Chem. 2002, 6, 627. (c) Basavaiah, D.; Rao, P. D.; Hyma, R. S. Tetrahedron 1996, 52, 8001. (d) Ciganek, E. Organic Reactions; John Wiley \& Sons: New York, 1997; Vol. 51, pp 201-350. (e) Drewes, S. E.; Roos, G. H. P. Tetrahedron 1988, 44, 4653. (f) Langer, P. Angew. Chem., Int. Ed. Engl. 2000, 39, 3049.
2. For our recent publications on Baylis-Hillman chemistry, see (a) Lee, M. J.; Lee, K. Y.; Lee, J. Y.; Kim. J. N. Org. Lett. 2004, 6, 3313. (b) Gowrisankar, S.; Lee, C. G.; Kim, J. N. Tetrahedron Lett. 2004, 45, 6949. (c) Gowrisankar, S.; Lee, K. Y.; Lee, C. G.; Kim, J. N. Tetrahedron Lett. 2004, 45, 6141. (d) Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Tetrahedron Lett. 2004, 45, 5485. (e) Kim, J. M.; Lee, K. Y.; Lee, S.-k.; Kim, J. N. Tetrahedron Lett. 2004, 45, 2805. (f) Lee, K. Y.; Kim, J. M.; Kim, J. N. Tetrahedron Lett. 2003, 44, 6737. (g) Kim, J. N.; Kim, J. M.; Lee, K. Y. Synlett 2003, 821. (h) Im, Y. J.; Lee, C. G.; Kim, H. R.; Kim, J. N. Tetrahedron Lett. 2003, 44, 2987. (i) Lee, K. Y.; Kim, J. M.; Kim, J. N. Synlett 2003, 357. (j) Lee, K. Y.; Kim, J. M.; Kim, J. N. Tetrahedron 2003, 59, 385. (k) Kim, J. N.; Kim, H. S.; Gong, J. H.; Chung, Y. M. Tetrahedron Lett. 2001, 42, 8341. (1) Kim, J. N.; Chung, Y. M.; Im, Y. J. Tetrahedron Lett. 2002, 43, 6209.
3. Lee, C. G.; Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Tetrahedron Lett. 2004, 45, 7409.
4. For the synthesis and biological activities of 5-substituted uracil derivatives, see (a) Esteban-Gamboa, A.; Balzarini, J.; Esnouf, R.; De Clercq, E.; Camarasa, M.-J.; Perez-Perez, M.-J. J. Med. Chem. 2000, 43, 971. (b) Kumar, R.; Sharma, N.; Nath, M.; Saffran, H. A.; Tyrrell, D. L. J. J. Med. Chem. 2001, 44, 4225. (c) Kumar, R.; Nath, M.; Tyrrell, D. L. J. J. Med. Chem. 2002, 45, 2032. (d) Hatta, H.; Zhou, L.; Mori, M.; Teshima, S.-i.; Nishimoto, S.-i. J. Org. Chem. 2001, 66, 2232. (e) Onishi, T.; Mukai, C.; Nakagawa, R.; Sekiyama, T.; Aoki, M.; Suzuki, K.; Nakazawa, H.; Ono, N.; Ohmura, Y.; Iwayama, S.; Okunishi, M.; Tsuji, T. J. Med. Chem. 2000, 43, 278. (f) Jang, Y. H.; Sowers, L. C.; Cagin, T.; Goddard III, W. A. J. Phys. Chem. A. 2001, 105, 274. (g) Sajiki, H.; Yamada, A.; Yasunaga, K.; Tsunoda, T.; Amer, M. F. A.; Hirota, K. Tetrahedron Lett. 2003, 44, 2179, and further references cited therein.
5. For the synthesis and biological activities of some interesting compounds containing pyrimidine skeleton, see (a) Gutschow, M.; Hecker, T.; Thiele, A.; Hauschildt, S.; Eger, K. Bioorg. Med. Chem. 2001, 9, 1059. (b) Tjarks, W.; Gabel, D. J. Med. Chem. 1991, 34, 315. (c) Jeong, J. U.; Chen, X.; Rahman, A.; Yamashita, D. S.; Luengo, J. I. Org. Lett. 2004, 6, 1013.
6. Berillon, L.; Wagner, R.; Knochel, P. J. Org. Chem. 1998, 63, 9117.
7. For the introduction of nucleophiles at the secondary position of Baylis-Hillman adducts by using the DABCO salt concept, see (a) Kim, J. N.; Lee, H. J.; Lee, K. Y.; Gong, J. H. Synlett 2002, 173. (b) Gong, J. H.; Kim, H. R.; Ryu, E. K.; Kim, J. N. Bull. Korean Chem. Soc. 2002, 23, 789. (c) Kim, J. M.; Lee, K. Y.; Kim, J. N. Bull. Korean Chem. Soc. 2004, 25, 328. (d) Chung, Y. M.; Gong, J. H.; Kim, T. H.; Kim, J. N. Tetrahedron Lett. 2001, 42, 9023. (e) Im, Y. J.; Kim, J. M.; Mun, J. H.; Kim, J. N. Bull. Korean Chem. Soc. 2001, 22, 349.

