DOI QR코드

DOI QR Code

Stoichiometric Solvation Effects. Solvolysis of Trifluoromethanesulfonyl Chloride

  • Koo, In-Sun (Department of Chemistry Education and Research Institute of Natural Science, Gyeongsang National University) ;
  • Yang, Ki-Yull (Department of Chemistry Education and Research Institute of Natural Science, Gyeongsang National University) ;
  • Park, Jong-Kuen (Department of Chemistry Education and Research Institute of Natural Science, Gyeongsang National University) ;
  • Woo, Mi-Young (Department of Chemistry Education and Research Institute of Natural Science, Gyeongsang National University) ;
  • Cho, Jun-Mi (Department of Chemistry Education and Research Institute of Natural Science, Gyeongsang National University) ;
  • Lee, Jong-Pal (Department of Chemistry, Dong-A University) ;
  • Lee, Ik-Choon (Department of Chemistry, Inha University)
  • Published : 2005.08.20

Abstract

Solvolyses of trifluoromethanesulfonyl chloride (TFMSC) in water and in aqueous binary mixtures of acetone, ethanol and methanol are investigated at 25, 35 and 45 ${^{\circ}C}$. The Grunwald-Winstein plot of first-order rate constants for the solvolytic reaction of TFMSC with YCl (based on 2-adamantyl chloride) shows marked dispersions into three separate curves for three aqueous mixtures. The extended Grunwald-Winstein plots for the solvolysis of TFMSC show better correlation. The large negative ${\Delta}S^{\neq}$ and relatively small positive ${\Delta}H^{\neq}$ reveals that the solvolytic reaction proceeds via a typical bimolecular reaction mechanism. The l and m values determined in various solvents are consistent with the proposed mechanism of the general base catalysis $S_AN/S_N2$reaction mechanism for TFMSC solvolyses based on mass law and stoichiometric solvation effect studies.

Keywords

References

  1. Barker, J. W.; Nathan, W. W. J. Chem. Soc. 1936, 236 https://doi.org/10.1039/jr9360000236
  2. Swain, C. G.; Langsdorf, W. P. J. Am. Chem. Soc. 1951, 73, 2813 https://doi.org/10.1021/ja01150a113
  3. Rossel, J. B. J. Chem. Soc. 1963, 5183 https://doi.org/10.1039/jr9630005183
  4. Yoh, S. D.; Tsuno, Y.; Yukawa, Y. J. Korean Chem. Soc. 1984, 28, 433
  5. Yoh, S. D. J. Korean Chem Soc. 1975, 19, 240
  6. Lee, I.; Rhyu, K. B.; Lee, B. C. J. Korean Chem. Soc. 1979, 23, 277
  7. Rogne, O. J. Chem. Soc. (B) 1968, 1294
  8. Kim, W. K.; Lee, I. J. Korean Chem. Soc. 1974, 18, 8
  9. Ciuffarin, E.; Senatore, L.; Isola, M. J. Chem. Soc. Perkin Trans, 2 1972, 468
  10. Stangeland, L. J.; Senatore, L.; Ciuffarin, E. J. Chem. Soc. Perkin Trans. 2 1972, 852
  11. Hall, H. K. Jr. J. Am. Chem. Soc. 1956, 78, 1450 https://doi.org/10.1021/ja01588a048
  12. Robertson, R. E.; Laughton, P. M. Can. J. Chem. 1957, 35, 1319 https://doi.org/10.1139/v57-175
  13. Rossall, B.; Robertson, R. E. Can. J. Chem. 1971, 49, 1451 https://doi.org/10.1139/v71-237
  14. Ballistreri, F. P.; Cantona, A.; Maccarone, E.; Tomaselli, G. A.; Tripolone, M. J. Chem. Soc. Perkin Trans. 2 1981, 438
  15. Koo, I. S.; Yang, K.; Kang, K.; Lee, I.; Bentley, T. W. J. Chem. Soc. Perkin Trans. 2 1998, 1179
  16. Koo, I. S.; Yang, K.; Kang, K.; Lee, I. Bull. Korean Chem. Soc. 1998, 19, 968
  17. Koo, I. S.; Lee, J. S.; Yang, K.; Kang, K.; Lee, I. Bull. Korean Chem. Soc. 1999, 20, 573
  18. Bentley, T. W.; Koo, I. S. J. Chem. Soc., Perkin Trans. 2 1989, 1385
  19. Bentley, T. W.; Carter, G. E. J. Am. Chem. Soc. 1982, 104, 5741 https://doi.org/10.1021/ja00385a031
  20. Bentley, T. W.; Harris, H. C.; Koo, I. S. J. Chem. Soc. Perkin Trans. 2 1988, 783
  21. Bentley, T. W.; Harris, H. C. J. Chem. Soc. Perkin Trans. 2 1986, 619
  22. Koo, I. S.; An, S. K.; Yang, K.; Koh, H. J.; Choi, M. H.; Lee, I. Bull. Korean Chem. Soc. 2001, 22, 419
  23. Bentley, T. W.; Bowen, C. T.; Morten, D. H.; Schleyer, P.v.R. J. Am. Chem. Soc. 1981, 103, 5466 https://doi.org/10.1021/ja00408a031
  24. Winstein, S.; Grunwald, E. J. Am. Chem. Soc. 1948, 70, 846 https://doi.org/10.1021/ja01182a117
  25. Bentley, T. W.; Dau-Schmidt, J.-P.; Llewellyn, G.; Mayr, H. J. Org. Chem. 1992, 57, 2387 https://doi.org/10.1021/jo00034a035
  26. Winstein, S.; Fainberg, A.; Grunwald, E. J. Am. Chem. Soc. 1957, 79, 4146 https://doi.org/10.1021/ja01572a046
  27. Fainberg, A.; Winstein, S. J. Am. Chem. Soc. 1957, 79, 1957
  28. Winstein, S.; Grunwald, E.; Jones, H. W. J. Am. Chem. Soc. 1951, 73, 2700 https://doi.org/10.1021/ja01150a078
  29. Kevill, D. N.; Anderson, S. W. J. Org. Chem. 1991, 56, 1845 https://doi.org/10.1021/jo00005a034
  30. Kevill, D. N.; D'Souza, M. J. Chem. Res(s). 1993, 174
  31. Kevill, D. N. In Advances in Quantitative Structure-property Relationships; Charton, M., Ed.; JAI Press: Greenwich, CT., 1966; Vol. 1, p 81
  32. An, S. K.; Yang, J. S.; Cho, J. M.; Yang, K.; Lee, J. P.; Bentley, T. W.; Lee, I. Bull. Korean Chem. Soc. 2002, 23, 419 https://doi.org/10.1007/BF02706744
  33. Bentley, T. W.; Carter, G. E.; Harris, H. C. J. Chem. Soc. Perkin Trans. 2 1985, 938
  34. Bentley, T. W.; Koo, I. S. J. Chem. Soc. Chem. Commun. 1988, 41
  35. Bentley, T. W.; Jones, R. O.; Koo, I. S. J. Chem. Soc. Perkin Trans. 2 1994, 753
  36. Bentley, T. W.; Jones, R. O. J. Chem. Soc. Perkin Trans. 2 1993, 2351
  37. Yang, K.; Koo, I. S.; Lee, I. J. Phys. Chem. 1995, 99, 15035 https://doi.org/10.1021/j100041a019
  38. Yang, K.; Koo, I. S.; Kang, D. H.; Lee, I. Bull. Korean Chem. Soc. 1994, 15, 419
  39. Yang, K.; Kang, K. D.; Koo, I. S.; Lee, I. Bull. Korean Chem. Soc. 1997, 18, 1186
  40. Koo, I. S.; An, S. K.; Yang, K.; Lee, I.; Bentley, T. W. J. Phy. Org. Chem. 2002, 15, 758 https://doi.org/10.1002/poc.550
  41. Oh, J.; Yang, K.; Koo, I. S.; Lee, I. J. Chem. Res. 1993, 310
  42. Bentley, T. W.; Koo, I. S.; Norman, S. J. J. Org. Chem. 1991, 56, 1604 https://doi.org/10.1021/jo00004a048
  43. Bentley, T. W.; Harris, H. C. J. Org. Chem. 1988, 53, 724 https://doi.org/10.1021/jo00239a004
  44. Lee, I.; Shon, S. C.; Lee, H. H. Bull. Korean Chem. Soc. 1983, 4, 208
  45. Bentley, T. W.; Jones, R. O. J. Chem. Soc. Perkin Trans. 2 1993, 2351
  46. Lee, I.; Koo, I. S.; Kang, H. K. Bull. Korean Chem. Soc. 1981, 2, 41 https://doi.org/10.1007/BF02697548
  47. Bentley, T. W.; Jones, R. O.; Koo, I. S. J. Chem. Soc. Perkin Trans. 2 1994, 753
  48. Bentley, T. W.; Llewellyn, G. Prog. Phys. Org. Chem. 1990, 17, 121 https://doi.org/10.1002/9780470171967.ch5
  49. Kevill, D. N.; D'Souza, M. J. Phys. Org. Chem. 2002, 15, 881 https://doi.org/10.1002/poc.569
  50. Kevill, D. N.; D'Souza, M. J. Chem. Soc., Perkin Trans. 2 1997, 1721
  51. Kivinen, A. Acta Chem. Scand. 1965, 19, 835
  52. Frost, A.; Pearson, R. G. Kinetic and Mechanism, 2nd ed.; Wiley: New York, 1961; Chap. 7
  53. Barker, J. W.; Nathan, W. W. J. Chem. Soc. 1936, 236 https://doi.org/10.1039/jr9360000236
  54. Swain, C. G.; Langsdorf, W. P. J. Am. Chem. Soc. 1951, 73, 2813 https://doi.org/10.1021/ja01150a113
  55. Ciuffarin, E.; Senatore, L.; Isola, M. J. Chem. Soc. Perkin Trans, 2 1972, 468

Cited by

  1. DFT Studies on Hydrolyses of Dimethylchlorothiophosphate vol.27, pp.11, 2006, https://doi.org/10.5012/bkcs.2006.27.11.1865
  2. Limitations of the Transition State Variation Model. Part 8. Dual Reaction Channels for Solvolyses of 3,4-Dimethoxybenzenesulfonyl Chloride vol.28, pp.12, 2005, https://doi.org/10.5012/bkcs.2007.28.12.2377