References
- Chen, J. L.; Noodleman, L.; Case, D. A.; Bashford, D. J. Phys. Chem. 1994, 98, 11059 https://doi.org/10.1021/j100094a013
- Li, J.; Fisher, C. L.; Chen, J. L.; Bashford, D.; Noodleman, L. Inorg. Chem. 1996, 35, 4694 https://doi.org/10.1021/ic951428f
- Kallies, B.; Mitzner, R. J. Phys. Chem. B 1997, 101, 2959 https://doi.org/10.1021/jp962708z
- Richardson, W. H.; Peng, C.; Bashford, D.; Noodleman, L.; Case, D. A. Int. J. Quantum Chem. 1997, 61, 207 https://doi.org/10.1002/(SICI)1097-461X(1997)61:2<207::AID-QUA3>3.0.CO;2-#
- Topol, I. A.; Tawa, G. J.; Burt, S. K.; Rashin, A. A. J. Phys. Chem. A 1997, 101, 10075 https://doi.org/10.1021/jp9723168
- Perakyla, M. J. Am. Chem. Soc. 1998, 120, 12895 https://doi.org/10.1021/ja981405a
- Schuurmann, G.; Cossi, M.; Barone, V.; Tomasi, J. J. Phys. Chem. A 1998, 102, 6706 https://doi.org/10.1021/jp981922f
- Shapley, W. A.; Bacskay, G. B.; Warr, G. G. J. Phys. Chem. B 1998, 102, 1938 https://doi.org/10.1021/jp9734179
- da Silva, C. O.; da Silva, E. C.; Nascimento, M. A. C. J. Phys. Chem. A 1999, 103, 11194 https://doi.org/10.1021/jp9836473
- Lyne, P. D.; Karplus, M. J. Am. Chem. Soc. 2000, 122, 166 https://doi.org/10.1021/ja991820i
- Silva, C. O.; da Silva, E. C.; Nascimento, M. A. C. J. Phys. Chem. A 2000, 104, 2402 https://doi.org/10.1021/jp992103d
- Topol, I. A.; Burt, S. K.; Rashin, A. A.; Erickson, J. W. J. Phys. Chem. A 2000, 104, 866 https://doi.org/10.1021/jp992691v
- Topol, I. A.; Tawa, G. J.; Caldwell, R. A.; Eissenstat, M. A.; Burt, S. K. J. Phys. Chem. A 2000, 104, 9619 https://doi.org/10.1021/jp001938h
- Wiberg, K. B.; Clifford, S.; Jorgensen, W. L.; Frisch, M. J. J. Phys. Chem. A 2000, 104, 7625 https://doi.org/10.1021/jp000944a
- Jang, Y. H.; Sowers, L. C.; Cagin, T.; Goddard III, W. A. J. Phys. Chem. A 2001, 105, 274 https://doi.org/10.1021/jp994432b
- Kubicki, J. D. J. Phys. Chem. A 2001, 105, 8756 https://doi.org/10.1021/jp011793u
- Liptak, M. D.; Shields, G. C. J. Am. Chem. Soc. 2001, 123, 7314 https://doi.org/10.1021/ja010534f
- Liptak, M. D.; Shields, G. C. Int. J. Quantum Chem. 2001, 85, 727 https://doi.org/10.1002/qua.1703
- Toth, A. M.; Liptak, M. D.; Phillips, D. L.; Shields, G. C. J. Chem. Phys. 2001, 114, 4595 https://doi.org/10.1063/1.1337862
- Klicic, J. J.; Friesner, R. A.; Liu, S.-Y.; Guida, W. C. J. Phys. Chem. A 2002, 106, 1327 https://doi.org/10.1021/jp012533f
- Liptak, M. D.; Gross, K. C.; Seybold, P. G.; Feldgus, S.; Shields, G. C. J. Am. Chem. Soc. 2002, 124, 6421 https://doi.org/10.1021/ja012474j
- Lopez, X.; Schaefer, M.; Dejaegere, A.; Karplus, M. J. Am. Chem. Soc. 2002, 124, 5010 https://doi.org/10.1021/ja011373i
- Jang, Y. H.; Goddard III, W. A.; Noyes, K. T.; Sowers, L. C.; Hwang, S.; Chung, D. S. Chem. Res. Toxicol. 2002, 15, 1023 https://doi.org/10.1021/tx010146r
- Hwang, S.; Jang, Y. H.; Chung, D. S. Bull. Korean Chem. Soc. 2005, 26, 585 https://doi.org/10.5012/bkcs.2005.26.4.585
- Lim, C.; Bashford, D.; Karplus, M. J. Phys. Chem. 1991, 95, 5610 https://doi.org/10.1021/j100167a045
- Tissandier, M. D.; Cowen, K. A.; Feng, W. Y.; Gundlach, E.; Cohen, M. H.; Earhart, A. D.; Coe, J. V.; Tuttle, T. R. Jr. J. Phys. Chem. A 1998, 102, 7787 https://doi.org/10.1021/jp982638r
- Tawa, G. J.; Topol, I. A.; Burt, S. K.; Caldwell, R. A.; Rashin, A. A. J. Chem. Phys. 1998, 109, 4852 https://doi.org/10.1063/1.477096
- Mejias, J. A.; Lago, S. J. Chem. Phys. 2000, 113, 7306 https://doi.org/10.1063/1.1313793
- Zhan, C.-G.; Dixon, D. A. J. Phys. Chem. A 2001, 105, 11534 https://doi.org/10.1021/jp012536s
- Chang, H.-C.; Jiang, J.-C.; Lin, S. H.; Lee, Y. T.; Chang, H.-C. J. Phys. Chem. A 1999, 103, 2941
- Chang, H. C.; Jiang, J. C.; Chang, H. C.; Wang, L. R.; Lee, Y. T. Isr. J. Chem. 1999, 39, 231 https://doi.org/10.1002/ijch.199900030
- Hwang, S.; Chung, D. S. Chem. Lett. 2002, 1220
- Hagemeister, F. C.; Gruenloh, C. J.; Zwier, T. S. J. Phys. Chem. A 1998, 102, 82 https://doi.org/10.1021/jp963763a
- Mo, O.; Yanez, M.; Elguero, J. J. Chem. Phys. 1997, 107, 3592 https://doi.org/10.1063/1.474486
- Provencal, R. A.; Paul, J. B.; Roth, K.; Chapo, C.; Casaes, R. N.; Saykally, R. J.; Tschumper, G. S.; Schaefer III, H. F. J. Chem. Phys. 1999, 110, 4258 https://doi.org/10.1063/1.478309
- Yamaguchi, Y.; Yasutake, N.; Nagaoka, M. J. Phys. Chem. A 2002, 106, 404 https://doi.org/10.1021/jp012831c
- Jaguar v4.1; Schrodinger Inc.: Portland, Oregon, 2000
- Slater, J. C. Self-Consistent Field for Molecules and Solids; McGraw-Hill: New York, 1974
- Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200 https://doi.org/10.1139/p80-159
- Becke, A. D. Phys. Rev. A 1988, 38, 3098 https://doi.org/10.1103/PhysRevA.38.3098
- Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785 https://doi.org/10.1103/PhysRevB.37.785
- Marten, B.; Kim, K.; Cortis, C.; Friesner, R. A.; Murphy, R. B.; Ringnalda, M. N.; Sitkoff, D.; Honig, B. J. Phys. Chem. 1996, 100, 11775 https://doi.org/10.1021/jp953087x
- Morrone, J. A.; Tuckerman, M. E. J. Chem. Phys. 2002, 117, 4403 https://doi.org/10.1063/1.1496457
- Grimsrud, E. P.; Kebarle, P. J. Am. Chem. Soc. 1973, 95, 7939 https://doi.org/10.1021/ja00805a002
- Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502 https://doi.org/10.1021/jp960976r
Cited by
- Computational Study of Hydrogen Bonding in Substituted Phenol-Acetonitrile-Water Clusters vol.55, pp.3, 2013, https://doi.org/10.1002/jccs.200800078
- Solvation Energies of the Proton in Methanol vol.9, pp.2, 2013, https://doi.org/10.1021/ct300669v
- Feasibility of occurrence of different types of protonated base pairs in RNA: a quantum chemical study vol.16, pp.34, 2014, https://doi.org/10.1039/C4CP02541E
- Proton-Coupled Electron Transfer in Molecular Electrocatalysis: Theoretical Methods and Design Principles vol.53, pp.13, 2014, https://doi.org/10.1021/ic5002896
- and Acidity Constant in Nonaqueous Organic Solvents vol.59, pp.11, 2014, https://doi.org/10.1021/je500459x
- Acid–Base Strength and Acidochromism of Some Dimethylamino–Azinium Iodides. An Integrated Experimental and Theoretical Study vol.119, pp.2, 2015, https://doi.org/10.1021/jp510982h
- Values in Different Solvents by Electrostatic Transformation vol.12, pp.7, 2016, https://doi.org/10.1021/acs.jctc.6b00446
- Structures and spectroscopy of protonated ammonia clusters at different temperatures vol.18, pp.38, 2016, https://doi.org/10.1039/C6CP03240K
- Erratum: Proton solvation in protic and aprotic solvents [J. Comput. Chem. 2015, 37, 1082-1091] vol.37, pp.23, 2016, https://doi.org/10.1002/jcc.24434
- DFT Study on Nitrite Reduction Mechanism in Copper-Containing Nitrite Reductase vol.55, pp.1, 2016, https://doi.org/10.1021/acs.biochem.5b00542
- DFT Study on Enzyme Turnover Including Proton and Electron Transfers of Copper-Containing Nitrite Reductase vol.55, pp.33, 2016, https://doi.org/10.1021/acs.biochem.6b00423
- QM/MM Calculation of the Enzyme Catalytic Cycle Mechanism for Copper- and Zinc-Containing Superoxide Dismutase vol.121, pp.30, 2017, https://doi.org/10.1021/acs.jpcb.7b03589
- Solvation energies of the proton in ammonia explicitly versus temperature vol.146, pp.13, 2017, https://doi.org/10.1063/1.4979568
- Thermodynamics-antioxidant activity relationships of some 4-benzylidenamino-4, 5-dihydro-1h-1,2,4-triazol-5-one derivatives: Theoretical evaluation vol.20, pp.9, 2017, https://doi.org/10.1080/10942912.2016.1225307
- Solvation energies of the proton in methanol revisited and temperature effects vol.20, pp.46, 2018, https://doi.org/10.1039/C8CP05823G
- A density functional study on synthetic polymer–amino acid interaction vol.130, pp.9, 2018, https://doi.org/10.1007/s12039-018-1524-2
- The Substitution Effect on Reaction Enthalpies of Antioxidant Mechanisms of Juglone and Its Derivatives in Gas and Solution Phase: DFT Study vol.2018, pp.2090-9071, 2018, https://doi.org/10.1155/2018/1958047
- Intra-electron transfer induced by protonation in copper-containing nitrite reductase vol.10, pp.4, 2018, https://doi.org/10.1039/C7MT00323D
- Grundlegende Bemerkungen zur Azidität vol.130, pp.16, 2018, https://doi.org/10.1002/ange.201709057
- Basic Remarks on Acidity vol.57, pp.16, 2018, https://doi.org/10.1002/anie.201709057
- Ionic radii of hydrated sodium cation from QTAIM vol.150, pp.3, 2019, https://doi.org/10.1063/1.5020150
- Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
- Quantitative aspects of and ionization mechanisms in positive-ion atmospheric pressure chemical ionization mass spectrometry vol.19, pp.12, 2005, https://doi.org/10.1016/j.jasms.2008.07.016
- Study of the solvent effect on the enthalpies of homolytic and heterolytic N–H bond cleavage in p-phenylenediamine and tetracyano-p-phenylenediamine vol.952, pp.1, 2005, https://doi.org/10.1016/j.theochem.2010.04.002
- Solvent effects on the antioxidant activity of 3,4-dihydroxyphenylpyruvic acid : DFT and TD-DFT studies vol.966, pp.1, 2011, https://doi.org/10.1016/j.comptc.2011.03.006
- DFT/B3LYP study of the solvent effect on the reaction enthalpies of homolytic and heterolytic OH bond cleavage in mono-substituted chromans vol.978, pp.1, 2005, https://doi.org/10.1016/j.comptc.2011.09.014
- Potential of polyphenols from an aqueous extract of apple peel as inhibitors of free radicals: An experimental and computational study vol.1035, pp.None, 2005, https://doi.org/10.1016/j.molstruc.2012.09.035
- The Protoelectric Potential Map (PPM): An Absolute Two‐Dimensional Chemical Potential Scale for a Global Understanding of Chemistry vol.20, pp.15, 2005, https://doi.org/10.1002/chem.201302473
- Reactivity of chitosan derivatives and their interaction with guanine: A computational study vol.128, pp.4, 2005, https://doi.org/10.1007/s12039-016-1064-6
- In silico design of hydrazone antioxidants and analysis of their free radical-scavenging mechanism by thermodynamic studies vol.8, pp.1, 2005, https://doi.org/10.1186/s43088-019-0011-2
- Large‐Sized Ammonia Clusters and Solvation Energies of the Proton in Ammonia vol.41, pp.1, 2005, https://doi.org/10.1002/jcc.26071
- Molecular design of curcumin analogues with potent antioxidant properties and thermodynamic evaluation of their mechanism of free radical scavenge vol.44, pp.1, 2005, https://doi.org/10.1186/s42269-020-00391-z