DOI QR코드

DOI QR Code

Calculation of the Solvation Free Energy of the Proton in Methanol

  • Hwang, Sun-Gu (School of Free Major, Miryang National University) ;
  • Chung, Doo-Soo (School of Chemistry, NS 60, Seoul National University)
  • Published : 2005.04.20

Abstract

The solvation free energy of proton in methanol was calculated by B3LYP flavor of density functional calculations in combination with the Poisson-Boltzmann continuum solvation model. In order to check the adequacy of the computation level, the free energies of clustering in the gas phase were compared with the experimental data. The solvents were taken into account in a hybrid manner, i.e. one to five molecules of methanol were explicitly considered while other solvent molecules were represented with an implicit solvation model.

Keywords

References

  1. Chen, J. L.; Noodleman, L.; Case, D. A.; Bashford, D. J. Phys. Chem. 1994, 98, 11059 https://doi.org/10.1021/j100094a013
  2. Li, J.; Fisher, C. L.; Chen, J. L.; Bashford, D.; Noodleman, L. Inorg. Chem. 1996, 35, 4694 https://doi.org/10.1021/ic951428f
  3. Kallies, B.; Mitzner, R. J. Phys. Chem. B 1997, 101, 2959 https://doi.org/10.1021/jp962708z
  4. Richardson, W. H.; Peng, C.; Bashford, D.; Noodleman, L.; Case, D. A. Int. J. Quantum Chem. 1997, 61, 207 https://doi.org/10.1002/(SICI)1097-461X(1997)61:2<207::AID-QUA3>3.0.CO;2-#
  5. Topol, I. A.; Tawa, G. J.; Burt, S. K.; Rashin, A. A. J. Phys. Chem. A 1997, 101, 10075 https://doi.org/10.1021/jp9723168
  6. Perakyla, M. J. Am. Chem. Soc. 1998, 120, 12895 https://doi.org/10.1021/ja981405a
  7. Schuurmann, G.; Cossi, M.; Barone, V.; Tomasi, J. J. Phys. Chem. A 1998, 102, 6706 https://doi.org/10.1021/jp981922f
  8. Shapley, W. A.; Bacskay, G. B.; Warr, G. G. J. Phys. Chem. B 1998, 102, 1938 https://doi.org/10.1021/jp9734179
  9. da Silva, C. O.; da Silva, E. C.; Nascimento, M. A. C. J. Phys. Chem. A 1999, 103, 11194 https://doi.org/10.1021/jp9836473
  10. Lyne, P. D.; Karplus, M. J. Am. Chem. Soc. 2000, 122, 166 https://doi.org/10.1021/ja991820i
  11. Silva, C. O.; da Silva, E. C.; Nascimento, M. A. C. J. Phys. Chem. A 2000, 104, 2402 https://doi.org/10.1021/jp992103d
  12. Topol, I. A.; Burt, S. K.; Rashin, A. A.; Erickson, J. W. J. Phys. Chem. A 2000, 104, 866 https://doi.org/10.1021/jp992691v
  13. Topol, I. A.; Tawa, G. J.; Caldwell, R. A.; Eissenstat, M. A.; Burt, S. K. J. Phys. Chem. A 2000, 104, 9619 https://doi.org/10.1021/jp001938h
  14. Wiberg, K. B.; Clifford, S.; Jorgensen, W. L.; Frisch, M. J. J. Phys. Chem. A 2000, 104, 7625 https://doi.org/10.1021/jp000944a
  15. Jang, Y. H.; Sowers, L. C.; Cagin, T.; Goddard III, W. A. J. Phys. Chem. A 2001, 105, 274 https://doi.org/10.1021/jp994432b
  16. Kubicki, J. D. J. Phys. Chem. A 2001, 105, 8756 https://doi.org/10.1021/jp011793u
  17. Liptak, M. D.; Shields, G. C. J. Am. Chem. Soc. 2001, 123, 7314 https://doi.org/10.1021/ja010534f
  18. Liptak, M. D.; Shields, G. C. Int. J. Quantum Chem. 2001, 85, 727 https://doi.org/10.1002/qua.1703
  19. Toth, A. M.; Liptak, M. D.; Phillips, D. L.; Shields, G. C. J. Chem. Phys. 2001, 114, 4595 https://doi.org/10.1063/1.1337862
  20. Klicic, J. J.; Friesner, R. A.; Liu, S.-Y.; Guida, W. C. J. Phys. Chem. A 2002, 106, 1327 https://doi.org/10.1021/jp012533f
  21. Liptak, M. D.; Gross, K. C.; Seybold, P. G.; Feldgus, S.; Shields, G. C. J. Am. Chem. Soc. 2002, 124, 6421 https://doi.org/10.1021/ja012474j
  22. Lopez, X.; Schaefer, M.; Dejaegere, A.; Karplus, M. J. Am. Chem. Soc. 2002, 124, 5010 https://doi.org/10.1021/ja011373i
  23. Jang, Y. H.; Goddard III, W. A.; Noyes, K. T.; Sowers, L. C.; Hwang, S.; Chung, D. S. Chem. Res. Toxicol. 2002, 15, 1023 https://doi.org/10.1021/tx010146r
  24. Hwang, S.; Jang, Y. H.; Chung, D. S. Bull. Korean Chem. Soc. 2005, 26, 585 https://doi.org/10.5012/bkcs.2005.26.4.585
  25. Lim, C.; Bashford, D.; Karplus, M. J. Phys. Chem. 1991, 95, 5610 https://doi.org/10.1021/j100167a045
  26. Tissandier, M. D.; Cowen, K. A.; Feng, W. Y.; Gundlach, E.; Cohen, M. H.; Earhart, A. D.; Coe, J. V.; Tuttle, T. R. Jr. J. Phys. Chem. A 1998, 102, 7787 https://doi.org/10.1021/jp982638r
  27. Tawa, G. J.; Topol, I. A.; Burt, S. K.; Caldwell, R. A.; Rashin, A. A. J. Chem. Phys. 1998, 109, 4852 https://doi.org/10.1063/1.477096
  28. Mejias, J. A.; Lago, S. J. Chem. Phys. 2000, 113, 7306 https://doi.org/10.1063/1.1313793
  29. Zhan, C.-G.; Dixon, D. A. J. Phys. Chem. A 2001, 105, 11534 https://doi.org/10.1021/jp012536s
  30. Chang, H.-C.; Jiang, J.-C.; Lin, S. H.; Lee, Y. T.; Chang, H.-C. J. Phys. Chem. A 1999, 103, 2941
  31. Chang, H. C.; Jiang, J. C.; Chang, H. C.; Wang, L. R.; Lee, Y. T. Isr. J. Chem. 1999, 39, 231 https://doi.org/10.1002/ijch.199900030
  32. Hwang, S.; Chung, D. S. Chem. Lett. 2002, 1220
  33. Hagemeister, F. C.; Gruenloh, C. J.; Zwier, T. S. J. Phys. Chem. A 1998, 102, 82 https://doi.org/10.1021/jp963763a
  34. Mo, O.; Yanez, M.; Elguero, J. J. Chem. Phys. 1997, 107, 3592 https://doi.org/10.1063/1.474486
  35. Provencal, R. A.; Paul, J. B.; Roth, K.; Chapo, C.; Casaes, R. N.; Saykally, R. J.; Tschumper, G. S.; Schaefer III, H. F. J. Chem. Phys. 1999, 110, 4258 https://doi.org/10.1063/1.478309
  36. Yamaguchi, Y.; Yasutake, N.; Nagaoka, M. J. Phys. Chem. A 2002, 106, 404 https://doi.org/10.1021/jp012831c
  37. Jaguar v4.1; Schrodinger Inc.: Portland, Oregon, 2000
  38. Slater, J. C. Self-Consistent Field for Molecules and Solids; McGraw-Hill: New York, 1974
  39. Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200 https://doi.org/10.1139/p80-159
  40. Becke, A. D. Phys. Rev. A 1988, 38, 3098 https://doi.org/10.1103/PhysRevA.38.3098
  41. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785 https://doi.org/10.1103/PhysRevB.37.785
  42. Marten, B.; Kim, K.; Cortis, C.; Friesner, R. A.; Murphy, R. B.; Ringnalda, M. N.; Sitkoff, D.; Honig, B. J. Phys. Chem. 1996, 100, 11775 https://doi.org/10.1021/jp953087x
  43. Morrone, J. A.; Tuckerman, M. E. J. Chem. Phys. 2002, 117, 4403 https://doi.org/10.1063/1.1496457
  44. Grimsrud, E. P.; Kebarle, P. J. Am. Chem. Soc. 1973, 95, 7939 https://doi.org/10.1021/ja00805a002
  45. Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502 https://doi.org/10.1021/jp960976r

Cited by

  1. Computational Study of Hydrogen Bonding in Substituted Phenol-Acetonitrile-Water Clusters vol.55, pp.3, 2013, https://doi.org/10.1002/jccs.200800078
  2. Solvation Energies of the Proton in Methanol vol.9, pp.2, 2013, https://doi.org/10.1021/ct300669v
  3. Feasibility of occurrence of different types of protonated base pairs in RNA: a quantum chemical study vol.16, pp.34, 2014, https://doi.org/10.1039/C4CP02541E
  4. Proton-Coupled Electron Transfer in Molecular Electrocatalysis: Theoretical Methods and Design Principles vol.53, pp.13, 2014, https://doi.org/10.1021/ic5002896
  5. and Acidity Constant in Nonaqueous Organic Solvents vol.59, pp.11, 2014, https://doi.org/10.1021/je500459x
  6. Acid–Base Strength and Acidochromism of Some Dimethylamino–Azinium Iodides. An Integrated Experimental and Theoretical Study vol.119, pp.2, 2015, https://doi.org/10.1021/jp510982h
  7. Values in Different Solvents by Electrostatic Transformation vol.12, pp.7, 2016, https://doi.org/10.1021/acs.jctc.6b00446
  8. Structures and spectroscopy of protonated ammonia clusters at different temperatures vol.18, pp.38, 2016, https://doi.org/10.1039/C6CP03240K
  9. Erratum: Proton solvation in protic and aprotic solvents [J. Comput. Chem. 2015, 37, 1082-1091] vol.37, pp.23, 2016, https://doi.org/10.1002/jcc.24434
  10. DFT Study on Nitrite Reduction Mechanism in Copper-Containing Nitrite Reductase vol.55, pp.1, 2016, https://doi.org/10.1021/acs.biochem.5b00542
  11. DFT Study on Enzyme Turnover Including Proton and Electron Transfers of Copper-Containing Nitrite Reductase vol.55, pp.33, 2016, https://doi.org/10.1021/acs.biochem.6b00423
  12. QM/MM Calculation of the Enzyme Catalytic Cycle Mechanism for Copper- and Zinc-Containing Superoxide Dismutase vol.121, pp.30, 2017, https://doi.org/10.1021/acs.jpcb.7b03589
  13. Solvation energies of the proton in ammonia explicitly versus temperature vol.146, pp.13, 2017, https://doi.org/10.1063/1.4979568
  14. Thermodynamics-antioxidant activity relationships of some 4-benzylidenamino-4, 5-dihydro-1h-1,2,4-triazol-5-one derivatives: Theoretical evaluation vol.20, pp.9, 2017, https://doi.org/10.1080/10942912.2016.1225307
  15. Solvation energies of the proton in methanol revisited and temperature effects vol.20, pp.46, 2018, https://doi.org/10.1039/C8CP05823G
  16. A density functional study on synthetic polymer–amino acid interaction vol.130, pp.9, 2018, https://doi.org/10.1007/s12039-018-1524-2
  17. The Substitution Effect on Reaction Enthalpies of Antioxidant Mechanisms of Juglone and Its Derivatives in Gas and Solution Phase: DFT Study vol.2018, pp.2090-9071, 2018, https://doi.org/10.1155/2018/1958047
  18. Intra-electron transfer induced by protonation in copper-containing nitrite reductase vol.10, pp.4, 2018, https://doi.org/10.1039/C7MT00323D
  19. Grundlegende Bemerkungen zur Azidität vol.130, pp.16, 2018, https://doi.org/10.1002/ange.201709057
  20. Basic Remarks on Acidity vol.57, pp.16, 2018, https://doi.org/10.1002/anie.201709057
  21. Ionic radii of hydrated sodium cation from QTAIM vol.150, pp.3, 2019, https://doi.org/10.1063/1.5020150
  22. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  23. Quantitative aspects of and ionization mechanisms in positive-ion atmospheric pressure chemical ionization mass spectrometry vol.19, pp.12, 2005, https://doi.org/10.1016/j.jasms.2008.07.016
  24. Study of the solvent effect on the enthalpies of homolytic and heterolytic N–H bond cleavage in p-phenylenediamine and tetracyano-p-phenylenediamine vol.952, pp.1, 2005, https://doi.org/10.1016/j.theochem.2010.04.002
  25. Solvent effects on the antioxidant activity of 3,4-dihydroxyphenylpyruvic acid : DFT and TD-DFT studies vol.966, pp.1, 2011, https://doi.org/10.1016/j.comptc.2011.03.006
  26. DFT/B3LYP study of the solvent effect on the reaction enthalpies of homolytic and heterolytic OH bond cleavage in mono-substituted chromans vol.978, pp.1, 2005, https://doi.org/10.1016/j.comptc.2011.09.014
  27. Potential of polyphenols from an aqueous extract of apple peel as inhibitors of free radicals: An experimental and computational study vol.1035, pp.None, 2005, https://doi.org/10.1016/j.molstruc.2012.09.035
  28. The Protoelectric Potential Map (PPM): An Absolute Two‐Dimensional Chemical Potential Scale for a Global Understanding of Chemistry vol.20, pp.15, 2005, https://doi.org/10.1002/chem.201302473
  29. Reactivity of chitosan derivatives and their interaction with guanine: A computational study vol.128, pp.4, 2005, https://doi.org/10.1007/s12039-016-1064-6
  30. In silico design of hydrazone antioxidants and analysis of their free radical-scavenging mechanism by thermodynamic studies vol.8, pp.1, 2005, https://doi.org/10.1186/s43088-019-0011-2
  31. Large‐Sized Ammonia Clusters and Solvation Energies of the Proton in Ammonia vol.41, pp.1, 2005, https://doi.org/10.1002/jcc.26071
  32. Molecular design of curcumin analogues with potent antioxidant properties and thermodynamic evaluation of their mechanism of free radical scavenge vol.44, pp.1, 2005, https://doi.org/10.1186/s42269-020-00391-z