Synthesis of N-Benzyl 3,5-Disubstituted Piperidines via Double Michael Addition Strategy

Mi Jung Lee, Ka Young Lee, and Jae Nyoung Kim*
Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 500-757, Korea
*E-mail: kimjn@chonnam.ac.kr
Received January 18, 2005

Key Words : 3,5-Disubstituted piperidine, Michael addition, Baylis-Hillman reaction

Recently, Basavaiah and co-workers have reported the facile synthesis of functionalized 1,4-pentadienes from Baylis-Hillman type reaction from cinnamyl bromide derivatives (vide infra, Scheme 1). ${ }^{1 a-c}$ However, the usefulness of the 1,4 -pentadienes has not been studied extensively. ${ }^{\text {ld,le }}$ We thought that we could prepare 3,5disubstituted piperidine skeleton from these compounds via double Michael addition reaction strategy. ${ }^{2-4}$

3,5-Disubstituted piperidines are important fundamental backbones for alkaloids, ${ }^{5 a}$ high affinity agonists of human GABA-A receptors, ${ }^{5 \mathrm{~b}}$ farnesyl-protein transferase inhibitors ${ }^{5 \mathrm{c}}$ and continue to be basic moieties in pharmaceutical research. ${ }^{2,6,7}$ Due to their unique biological properties, the piperidines have been target molecules in organic synthesis. ${ }^{2,6,7}$
The starting materials 3a-e were synthesized according to the reported methods ${ }^{1}$ from the corresponding bromides or acetates 2a-c as shown in Scheme 1. With the 1,4-dienes in our hands, we first tried the reaction of $\mathbf{3 a}$ and benzylamine without solvent. As expected, 3,5-disubstituted piperidine 4a was obtained. As shown in Table 1 (entry 1), 4a-cis (28\%) and $\mathbf{4 a}$-trans (25%) were isolated. In the reaction, small amount of piperidone derivative $\mathbf{5 a}$ was also isolated (16%). The structures of piperidines $\mathbf{4 a}$ were easily assigned based on their ${ }^{1} \mathrm{H}$ NMR spectra. As reported in a similar system, ${ }^{8}$ the benzylic protons appear as a singlet for $\mathbf{4 a}$-cis whereas as a typical $A B$ quartet for $\mathbf{4 a}$-trans. However, long reaction time was required to complete the reaction at room temperature (5 days). When we elevated the temperature of the reaction mixture, somewhat complex mixtures were observed on TLC. Thus, we tried the same reaction in $\mathrm{CH}_{3} \mathrm{CN}$ at refluxing temperature. Long reaction time was
required in this case also (entry $2,60 \mathrm{~h}$) to get similar yields of products. In order to reduce the reaction time we used LiClO_{4} (2 equiv) in refluxing $\mathrm{CH}_{3} \mathrm{CN}$, and we obtained similar results (entry $3,24 \mathrm{~h}$) in relatively shorter reaction time. ${ }^{4 \mathrm{c}}$ Similarly, the corresponding piperidines 4b-e were synthesized in moderate yields from 3b-e and the results are summarized in Table 1.

The reaction mechanism for the formation of piperidine 4 and piperidone 5 is depicted in Scheme 2. Intermolecular Michael type addition of benzylamine to 1,4-pentadiene 3 gave the corresponding intermediate \mathbf{I}. Intramolecular consecutive Michael type reaction (pathway a) gave the piperidine 4. Piperidone derivative 5 was formed by amide bond formation pathway (pathway b). As mentioned above, the benzylic protons of four cis-isomers ($\mathbf{4 a}, \mathbf{4 c} \mathbf{c} \mathbf{e}$) appear as a singlet. The benzylic protons of all trans-isomers appear as AB quartets $(\Delta \delta / J=2.4-5.3)$. Exceptionally, the benzylic protons of $\mathbf{4 b}$-cis showed a typical AB quartet pattern with a relatively small $\Delta \delta / J$ value $(\Delta \delta / J=1.6)$. For the synthesis of $4 \mathbf{c}$, the use of LiClO_{4} gave unsatisfactory results. Thus, in this case, we used the neat condition (entry 5).

In summary, we disclosed the facile synthesis of 3,5disubstituted piperidines from the easily available 1,4pentadienes via double Michael addition reactions. Further studies on the selective formation of one-isomer and the chemical transformations of the synthesized piperidines are underway.

Experimental Section

Synthesis of starting materials 2a-c was performed according to the literature methods ${ }^{1}$ from the corresponding

Scheme 1

Table 1. Synthesis of piperidines 4 and piperidones 5 from $\mathbf{3}$ and benzylamine
Entry
${ }^{a}$ The use of typical reaction conditions $\left(\mathrm{CH}_{3} \mathrm{CN}, \mathrm{LiClO}_{4}\right.$, reflux) gave more complex mixtures of intractable mixtures. ${ }^{b}$ The corresponding piperidone was not isolated. ${ }^{c}$ The stereochemistry of phenyl group was not determined.

Scheme 2

Baylis-Hillman adducts 1 by using $\mathrm{HBr}, \mathrm{PBr}_{3}$, or $\mathrm{Ac}_{2} \mathrm{O}$ / DMAP conditions (Scheme 1) in $66-94 \%$ isolated yields.

Synthesis of starting materials ($\left.\mathbf{3 a},{ }^{1 \mathrm{c}} \mathbf{3 b},{ }^{1 \mathrm{c}} \mathbf{3} \mathbf{c},{ }^{1 \mathrm{c}} \mathbf{3} \mathbf{e}^{1 \mathrm{a}}\right)$ was carried out according to the reported procedures (Scheme 1)
in $52-81 \% .^{1}$ The compound 3d was also prepared (2c, methyl acrylate, DABCO, rt, 8 days, 30%) by following the reported method ${ }^{1}$ and the IR and ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 d}$ is as follows: IR $(\mathrm{KBr}) 1724 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.71$ (s, $6 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H}), 5.35(\mathrm{~s}, 2 \mathrm{H}), 6.40(\mathrm{~s}, 2 \mathrm{H}), 7.15-7.34(\mathrm{~m}$, 5 H).
Typical procedure for the reaction of 3 a and benzylamine in $\mathrm{CH}_{3} \mathbf{C N}$ in the presence of LiClO_{4} (entry 3 in Table 1): A stirred mixture of $\mathbf{3 a}$ ($184 \mathrm{mg}, 1 \mathrm{mmol}$), benzylamine ($160 \mathrm{mg}, 1.5 \mathrm{mmol}$), and $\mathrm{LiClO}_{4}(212 \mathrm{mg}, 2$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ was heated to reflux for 24 h . After usual workup and column chromatographic purification process (hexanes/EtOAc, $10: 1$) we obtained 4a-cis (102 mg) and 4a-trans (67 mg) as clear oils in 35% and 23%, respectively. Spectroscopic data of synthesized compounds are as follows.

4a-cis ${ }^{6 c}$: clear oil; IR $(\mathrm{KBr}) 1736 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.54(\mathrm{q}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{t}, J=11.4$ $\mathrm{Hz}, 2 \mathrm{H}), 2.30-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.64(\mathrm{tt}, J=12.0$ and 3.9 Hz , $2 \mathrm{H}), 3.08-3.14(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 6 \mathrm{H}), 7.22-7.35$ $(\mathrm{m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.86,41.44,51.93$, 54.86, 62.95, 127.38, 128.50, 129.16, 137.99, 173.95; Mass (70 eV) m / z (rel intensity) 91 (100), 168 (16), 200 (15), 260 (4), $291\left(\mathrm{M}^{+}, 4\right)$.

4a-trans: clear oil; IR (KBr) $1732 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.98(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.59-2.71(\mathrm{~m}, 4 \mathrm{H})$, 2.81-2.89 (m, 2H), 3.41 (d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~d}, J=$ $13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 6 \mathrm{H}), 7.20-7.33(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 27.41,39.25,51.81,55.15,62.81,127.25$, $128.28,128.92,138.29,174.34$; Mass (70 eV) m / z (rel intensity) 91 (100), 168 (33), 200 (18), 260 (8), 291 ($\mathrm{M}^{+}, 11$).
5a: clear oil; IR (KBr) 1736, 1658, $1616 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.72-2.95(\mathrm{~m}, 3 \mathrm{H}), 3.44-3.58(\mathrm{~m}, 2 \mathrm{H})$, $3.65(\mathrm{~s}, 3 \mathrm{H}), 4.61(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=14.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.42-5.43(\mathrm{~m}, 1 \mathrm{H}), 6.34-6.36(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.37(\mathrm{~m}$, 5 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 32.41,38.99,48.49$, 50.80, 52.14, 123.82, 127.53, 128.17, 128.63, 135.18, 136.71, 163.51, 172.01; Mass (70 eV) m / z (rel intensity) 41 (31), 65 (36), 91 (100), 259 ($\mathrm{M}^{+}, 4$).

4b-cis: clear oil; IR (KBr) $2241,1736 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.69(\mathrm{q}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-2.19(\mathrm{~m}$, $2 \mathrm{H}), 2.36-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{tt}, J=11.6$ and $3.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.74(\mathrm{tt}, J=11.6$ and $3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.06-3.15(\mathrm{~m}, 2 \mathrm{H}), 3.54$ (d, $J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H})$, 7.26-7.36 (m, 5H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.34$, $30.28,40.86,52.20,54.46,54.70,62.52,120.25,127.73$, 128.66, 129.12, 137.20, 172.75.

4b-trans: clear oil; IR (KBr) 2241, $1736 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.01-2.07(\mathrm{~m}, 2 \mathrm{H}), 2.50-2.60(\mathrm{~m}, 2 \mathrm{H})$, 2.70-2.93 (m, 3H), 3.02-3.09 (m, 1H), 3.51 (d, $J=13.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.63(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 7.23-7.36(\mathrm{~m}$, $5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.56,29.08,39.07$, 52.10, 54.52, 54.70, 62.37, 120.93, 127.58, 128.58, 128.89, 137.50, 173.31 .

4c-cis: clear oil; IR (KBr) 1736, $1709 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.44(\mathrm{q}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-2.07(\mathrm{~m}$,
$2 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.25-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.73(\mathrm{~m}, 2 \mathrm{H})$, 3.03-3.14 (m, 2H), 3.57 (s, 2H), 3.66 (s, 3H), 7.22-7.35 (m, 5 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 28.60, 29.51, 41.61, 49.26, 51.96, 54.45, 54.89, 63.07, 127.41, 128.52, 129.18, 137.95, 173.98, 209.23; Mass (70 eV) m / z (rel intensity) 42 (48), 91 (100), 184 (13), $275\left(\mathrm{M}^{+}, 4\right)$.

4c-trans: clear oil; IR (KBr) 1732, $1709 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.93(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H})$, $2.54-2.84(\mathrm{~m}, 6 \mathrm{H}), 3.39(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=$ $13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 7.22-7.33(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.92,28.22,39.09,46.94,51.81,54.88$, $55.38,63.09,127.40,128.38,129.10,138.25,174.47$, 209.80; Mass (70 eV) m/z (rel intensity) 91 (100), 184 (13), 232 (6), $275\left(\mathrm{M}^{+}, 4\right)$.

5c: clear oil; IR (KBr) 1712, 1658, $1612 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.62-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.83-$ $2.94(\mathrm{~m}, 2 \mathrm{H}), 3.35-3.54(\mathrm{~m}, 2 \mathrm{H}), 4.55(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.80(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.42-5.44(\mathrm{~m}, 1 \mathrm{H}), 6.35-6.36(\mathrm{~m}$, 1 H), 7.24-7.36 (m, 5H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 28.35, 32.64, 46.76, 48.11, 51.10, 123.95, 127.83, 128.47, 128.92, 135.61, 136.96, 163.69, 206.92.

4d-cis: clear oil; IR (KBr) $1736 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.34(\mathrm{t}, J=11.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{td}, J=11.4$ and $3.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.08-3.16(\mathrm{~m}, 3 \mathrm{H}), 3.38(\mathrm{~s}, 6 \mathrm{H}), 3.61(\mathrm{~s}$, 2H), 7.14-7.37 (m, 10H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 47.25, 48.92, 51.72, 55.85, 62.68, 127.30, 127.55, 128.03, $128.59,128.62,129.24,137.74,140.42,173.14$; Mass (70 $\mathrm{eV}) \mathrm{m} / \mathrm{z}$ (rel intensity) 91 (100), 118 (28), 244 (8), 276 (9), $367\left(\mathrm{M}^{+}, 3\right)$.

4d-trans: white solid, mp 88-90 ${ }^{\circ} \mathrm{C}$; IR (KBr) $1739 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.36(\mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.46(\mathrm{dd}, J=11.7$ and $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J=7.8$ and 3.3 $\mathrm{Hz}, 1 \mathrm{H}), 3.18-3.23(\mathrm{~m}, 3 \mathrm{H}), 3.45(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.47$ $(\mathrm{s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{td}, J=$ 10.8 and $3.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.13-7.33 (m, 10H); ${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 42.86,44.99,46.65,51.32,51.87,55.95$, 56.58, 62.33, 126.76, 127.35, 128.32, 128.42, 128.45, 128.81, 138.23, 141.09, 172.47, 174.30.

4e-cis: white solid, mp $114-116^{\circ} \mathrm{C}$; IR (KBr) 2241, 1736 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.28-2.44(\mathrm{~m}, 2 \mathrm{H})$, 2.92-3.00 (m, 3H), $3.16(\mathrm{dt}, J=11.4$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.27$ (dd, $J=11.4$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 2 \mathrm{H})$, 7.22-7.38 (m, 10H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 35.31$, 47.66, 48.51, 51.97, 55.41, 55.47, 62.29, 119.15, 127.85, $127.88,128.24,128.74,129.08,129.18,137.00,138.74$, 172.17.

4e-trans: white solid, mp $135-137{ }^{\circ} \mathrm{C}$; IR (KBr) 2245, $1736 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.33(\mathrm{t}, J=10.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.41(\mathrm{dd}, J=11.7$ and $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.98-3.01(\mathrm{~m}$, $1 \mathrm{H}), 3.08(\mathrm{dd}, J=11.7$ and $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{dt}, J=11.4$ and $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{ddd}, J=10.8,3.9$, and $1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.46(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{dd}, J=11.4 \mathrm{and} 3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=$ $13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.42(\mathrm{~m}, 10 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 36.51,44.30,45.90,52.08$, 55.06, 56.03, 62.08, 119.46, 127.69, 127.86, 128.13, 128.76, 128.94, 129.05, 137.37, 138.91, 172.72.

References and Notes

1. For the synthesis and reactions of 1,4-diene systems, see (a) Basavaiah, D.; Kumaragurubaran, N.; Sharada, D. S. Tetrahedron Lett. 2001, 42, 85. (b) Basavaiah, D.; Kumaragurubaran, N.; Sharada, D. S.; Reddy, R. M. Tetrahedron 2001, 57, 8167. (c) Basavaiah, D.; Sharada, D. S.; Kumaragurubaran, N.; Reddy, R. M. J. Org. Chem. 2002, 67, 7135. (d) Grigg, R.; Dorrity, M. J.; Heaney, F.; Malone, J. F.; Rajviroongit, S.; Sridharan, V.; Surendrakumar, S. Tetrahedron 1991, 47, 8297. (e) Grigg, R.; Malone, J. F.; Dorrity, M. R. J.; Heaney, F.; Rajviroongit, S.; Sridharan, V.; Surendrakumar, S. Tetrahedron Lett. 1988, 29, 4323.
2. For the synthesis of piperidine skeleton via double Michael addition, see Hughes, F. Jr.; Grossman, R. B. Org. Lett. 2001, 3, 2911.
3. For the synthesis of pyrrolidine derivatives via double Michael addition, see Tarnchompoo, B.; Thebtaranonth, C.; Thebtaranonth, Y. Tetrahedron Lett. 1987, 28, 6675.
4. For the reaction conditions and stereochemistry of Michael reaction of related systems, see (a) Perlmutter, P.; Tabone, M. Tetrahedron Lett. 1988, 29, 949. (b) Hadimani, S. B.; Padmakumar, R.; Bhat, S. V. Synth. Commun. 1996, 26, 3527. (c) Azizi, N.; Saidi, M. R. Tetrahedron 2004, 60, 383. (d) Correc, O.; Guillou, K.; Hamelin, J.; Paquin, L.; Texier-Boullet, F.; Toupet, L. Tetrahedron Lett. 2004, 45, 391. (e) Christoffers, J. J. Chem. Soc., Perkin Trans. 1 1997, 3141.
5. For the biological activities of disubstituted piperidine derivatives, see (a) Elbein, A. D.; Molyneux, R. In Alkaloids; Chemical and Biological Perspectives; Pelletier, S. W., Ed.; John Wiley \& Sons: New York, 1987; Vol. 57, P. 1. (b) Collins, I.; Davey, W. B.; Rowley, M.; Quirk, K.; Bromidge, F. A.; McKernan, R. M.; Thompson, S.-A.; Wafford, K. A. Bioorg. Med. Chem. Lett. 2000,

10, 1381. (c) Kim, B. M.; Shaw, A. W.; Graham, S. L.; Desolms, S. J.; Ciccarone, T. M. US 5817678A, 1996.
6. For the synthesis of N-protected 3,5-piperidine dicarboxylates and their usefulness as synthetic intermediates, see (a) Park, J.-S.; Yeom, C.-E.; Choi, S. H.; Ahn, Y. S.; Ro, S.; Jeon, Y. H.; Shin, D.K.; Kim, B. M. Tetrahedron Lett. 2003, 44, 1611. (b) Liang, X.; Lohse, A.; Bols, M. J. Org. Chem. 2000, 65, 7432. (c) Danieli, B.; Lesma, G.; Passarella, D.; Silvani, A. Tetrahedron: Asymmetry 1996, 7, 345. (d) Danieli, B.; Lesma, G.; Passarella, D.; Silvani, A. J. Org. Chem. 1998, 63, 3492. (e) Iding, H.; Wirz, B.; Sarmiento, R.-M. R. Tetrahedron: Asymmetry 2003, 14, 1541.
7. For the synthesis of some interesting piperidine derivatives and their biological activities, see (a) Igarashi, J.; Ishiwata, H.; Kobayashi, Y. Tetrahedron Lett. 2004, 45, 8065. (b) Pave, G.; Leger, J.-M.; Jarry, C.; Viaud-Massuard, M.-C.; Guillaumet, G. J. Org. Chem. 2003, 68, 1401. (c) Roa, L. F.; Gnecco, D.; Galindo, A.; Teran, J. L.; Bernes, S. Tetrahedron: Asymmetry 2004, 15, 847. (d) Concellon, J. M.; Riego, E.; Rivero, I. A.; Ochoa, A. J. Org. Chem. 2004, 69, 6244. (e) Danieli, B.; Lesma, G.; Passarella, D.; Piacenti, P.; Sacchetti, A.; Silvani, A.; Virdis, A. Tetrahedron Lett. 2002, 43, 7155. (f) Cook, C. E.; Wani, M. C.; Jump, J. M.; Lee, Y.-W.; Fail, P. A.; Anderson, S. A.; Gu, Y.-Q.; Petrow, V. J. Med. Chem. 1995, 38, 753. (g) Meyer, M. D.; DeBernardis, J. F.; Hancock, A. A. J. Med. Chem. 1994, 37, 105. (h) Booth, R. G.; Trevor, A.; Singer, T. P.; Castagnoli, N. Jr. J. Med. Chem. 1989, 32, 473. (i) Murthy, K. S. K.; Rey, A. W.; Tjepkema, M. Tetrahedron Lett. 2003, 44, 5355. (j) Clarke, R. L.; Gambino, A. J.; Daum, S. J. J. Med. Chem. 1974, 17, 1040. (k) Montoro, R.; Marquez, F.; Llebaria, A.; Delgado, A. Eur. J. Org. Chem. 2003, 217.
8. For the assignment of stereochemistry of disubstituted piperidines, see Hill, R. K.; Chan, T.-H. Tetrahedron 1965, 21, 2015.

